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1. Introduction: the differential sensitivity algorithm.

A scored result, R, in a Monte Carlo calculation may be represented in the form:

∏=
i iPQR (1)

Where Pi are the probabilities associated with a each event, i, in the random
walk of a particle and Q is a scaling constant. If the result is sensitive to some
parameter, s, then:
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The summation of the terms (1/P.dP/ds) is effectively a weight factor that is
accumulated during the calculation. It is applied to the scored result to give its
differential with respect to parameter s.

In the Monte Carlo code MCBEND1, geometry models use the differences
and intersections of simple solid bodies to define volumes of space occupied by a
uniform material. The geometrical sensitivity option allows the perturbation 'ds'
to represent a differential displacement of a body along one of its local co-
ordinate axes or a change to one of its dimensions – e.g. the radius of a cylinder.

The differential sensitivity method has advantages over making finite
perturbations and observing the changes in results. If the overhead for evaluating
sensitivity terms is less than a factor two then it is more efficient than executing
two calculations. If small, finite changes are made to the model then the precise
difference in the results will be masked by the Monte Carlo statistical noise. If
larger changes are made they may be physically unrealistic.

2. The probability of reaching a boundary

From any arbitrary point on a particle track approaching a boundary, the
probability of reaching that boundary without a collision is simply:

cteP −= t = the geometrical distance to the boundary
c = the total cross section of the material before the boundary.
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The term may be related to a geometrical displacement of a parameter, s:
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The differential dt/ds is purely
geometrical. The example in the sketch
illustrates a case where the specified
geometrical perturbation is the
displacement of a plane surface along its
normal. The term dt/ds is then the secant of
the angle (θ) at which the particle track
crosses the surface. For first order
sensitivities, the same result applies to
curved surfaces - e.g. the crossing of a
cylindrical boundary with ds representing a
change in its radius.

The crossing of a perturbed boundary is a well defined event in the history
of a particle; the above term may be evaluated and accumulated in a sensitivity
weight register with little additional effort.

3. The probability of colliding before a boundary
From any arbitrary point on a particle track approaching a boundary, the
probability of colliding before reaching that boundary is given by:

cteP −−= 1
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However, it is not appropriate to apply this weight term to every collision
event. Pre-boundary collisions could occur several mean-free-paths before a
boundary and it would be illogical to weight them for a perturbation that has not
been reached or even approached.

The sensitivity term for the crossing of a perturbed boundary (equation 4) is
negative for a displacement along the particle track: fewer particles reach the
boundary as a result of the displacement. The number of pre-boundary collisions
increases (equation 5) but the increase should be confined to collisions within the
differential limit of the boundary. In a practical Monte Carlo calculation the
probability of such events is vanishingly small.

One solution attempted during development of the sensitivity algorithm was
to confine the application of sensitivity weights to collisions that occurred close
to a boundary: say within 0.1mfp. This leads to  the following weight term to
apply to collisions that occurred within ∆t of a boundary:
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Thus we would be applying a relatively high weight to a relatively small
number of events.



This solution met with limited success: if the chosen interval was reduced
then the approximation became more valid but the statistical noise on the
sensitivity results increased; if the interval was increased then the statistics
improved but the approximation became greater. The method was found to be
entirely inadequate for second order sensitivity calculations.

A practical solution was found by re-examining the basic form of the
sensitivity calculations (equation 2). Consider a less formal representation
involving only three probabilities:
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Suppose one of the probabilities is extremely small (e.g. P2 = ε) but its
differential is not. The equation reduces to:
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A collision within the differential limit of the perturbed boundary is such an
event. Its probability and differential are:
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Such an event may be forced to happen in a Monte Carlo calculation when a
particle track crosses a perturbed boundary. The progeny of the collision are
assigned an extremely low weight so that the contribution they make to any
detectors which they enter is negligible. The chosen weight is arbitrary - say 10-6

- and may be equated to ε in the above analysis.
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Normal track

Forced collision
Detector

Additional track

Perturbed  boundary By this method, we have
represented a very rare event and
given it a very large sensitivity
weight. However, we have made
the event frequent (by forcing it)
so the statistical noise does not
become unacceptable. An
example of such an event is
sketched on the right.

There is clearly a computational overhead here: additional tracks from the
forced collisions must be traced. The severity depends on how late in the particle
history the perturbed boundary is crossed; if it is near the detector then the extra
tracks are relatively short. In MCBEND, provision is made for restricting the
frequency of forced collisions with a compensating weight enhancement for
those that do occur.

4. Post-boundary events.

The above analysis has been confined to events in the material preceding a
perturbed boundary. Contributions to the sensitivity weight are also generated by
the fact that the path length of the particle in the material beyond the boundary is
reduced when the boundary is displaced along the track. If c' is the total cross
section of the material beyond a boundary then the sensitivity weight for a
particle track that crosses it is increased by c' dt/ds. A forced collision must be
generated immediately after the boundary with a sensitivity weight (-c'/ε) dt/ds.
Quite correctly, these terms cancel those of the pre-boundary events when the
material on either side of the boundary is the same.

5. Types of perturbation.

The simplest form of perturbation is one in which a single surface is moved.
Applications include the following examples.

Assessing the sensitivity of reactor pressure vessel damage to its inner
radius. A large pressure vessel may change its radius significantly due to thermal
expansion. There may be some uncertainty over the difference between the
design radius and the 'as-built' dimension.

The biological dose beyond a shield wall will depend upon its thickness.
During a cycle of design calculations, the outer boundary of the shield may be
declared as a perturbed boundary to provide an estimate of the gradient of the
dose vs thickness curve. This can reduce the number of survey calculations
required and allow rapid convergence on the thickness required to attain a given
dose level.

A more complex application is one in which a component of the geometrical
model may be displaced – particularly if it contains a source.

In a well logging calculation the source and detector are contained within a
tool that is lowered down a bore hole. The measurements obtained will be



sensitive to the position of the tool relative to the bore hole centre. The
geometrical sensitivity option allows this to be quantified.

In this mode, the source point and the particle tracks undergo the same
differential displacement as the tool. Boundary crossings within the tool and at
its surface are not deemed to be perturbed relative to the track. Differential
sensitivity terms are derived when the displaced track crosses the fixed surfaces
of the bore hole and its environment.

6. Second order sensitivities.

In many applications, the variation of the result with a geometrical change is
non-linear. The curvature of the variation may be assessed by evaluating the
second differential terms. A simple approach here is to take the mean gradient of
the first order sensitivities between two points and use it as an estimate of the
second order differential.

Alternatively, the method of evaluating the first order sensitivities may be
extended to second order. The following terms can be derived for the probability
of a particle reaching a perturbed boundary.
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Terms such as the above are generated when the second differential of the
result, R, is taken with respect to a geometrical parameter s. For plane surfaces,
the geometrical term d2t/ds2 is zero; for curved surfaces it is dependent on the
shape of the surface and its curvature.

Detailed analysis of the provision to be made for forced boundary collisions
shows that two collisions must be forced to obtain the second order sensitivity
contributions. A number of combinations are required for distributing these two
collisions about a perturbed boundary.

The complexity of this process, and the extra computing effort required to
track the plethora of extra particles associated with second order sensitivities
renders the method unattractive compared with the relative simplicity of the first
order evaluation. A prototype implementation has been attempted in MCBEND
with limited success. The statistical uncertainties on the second order sensitivities
were very poor compared with those obtained for first order.

7. Example application.

The following example illustrates the type of calculation that may be
executed. The materials are formed from a fictitious nuclide that has the property
of scattering isotropically with the loss of half the incident energy. The
calculation records the fluxes in groups representing 0 – 4 scattering events
together with a response function that is the sum over all groups.
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system representing a notional
reactor system.

The outer radius of the
thermal shield (nominally
18.0units) is defined as a
perturbed boundary. Calculations
were executed for specific
variations: 17.0, 18.0, 19.0, 20.0.
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The sketch left plots the
results of calculations with explicit
variations of the thermal shield
radius. Superimposed are the
gradients at each point provided by
the geometrical sensitivity results.
Had the variations been confined
to the two end points (R=17 and
R=20) then, in the absence of
geometrical sensitivity results, a
linear interpolation would not give
correct intermediate values. The
gradients at these points could be
used to provide a reasonable
estimate of the variation between
them rather than requiring three or
four executions.

In this example, a geometrical sensitivity estimation extended the execution
time by about 25%. The uncertainty on dR/ds was of the order 4%.

8. Summary

The method of estimating differential sensitivities in Monte Carlo
calculations has been extended to perturbations of the geometry model. The
problem of representing differential changes in collision rates near perturbed
boundaries has been resolved by forcing extra collisions at these boundaries. The
extension to second order has been outlined. Some potential applications of the
technique have been listed. An example application illustrates its usefulness.
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