
INTEGRATION OF THE MONK MONTE CARLO
NEUTRONICS CODE IN THE NURESIM PLATFORM

F. Tantillo, S. D. Richards, A. J. Smethurst and D. J. Long
ANSWERS Software Service, Wood

Kings Point House, Queen Mother Square, Poundbury, Dorchester, United Kingdom, DT1 3BW

simon.richards@woodplc.com

ABSTRACT

The MONK R© Monte Carlo neutronics code has been integrated into the NURESIM nu-
clear reactor simulation platform and coupled to the subchannel thermal hydraulics code
SUBCHANFLOW. A PWR pincell calculation is used to demonstrate the coupled code
system, results of which agree well with with independent calculations carried out with
WIMS coupled with its own sub-channel module ARTHUR.

KEYWORDS: Monte Carlo, neutronics, thermal hydraulic, coupling

1. INTRODUCTION

The Horizon 2020 McSAFE project is a collaborative effort involving 12 institutions from 7 EU
countries to provide reliable and efficient numerical tools for the simulation of light water reactors
(LWRs). One of the main objectives of the project is to develop valuable numerical tools for realis-
tic core design, safety analysis and industry-like applications of LWRs, including optimal coupling
of Monte Carlo (MC) codes to thermal-hydraulic (TH) solvers, and time-dependent Monte Carlo
methods. These tools are being developed in the framework of the NURESIM [1] NUclear RE-
actor SIMulation platform, in order to consolidate and further its use, and also to benefit from
its innovative coupling approaches. NURESIM provides, within the SALOME [2] open source
integration platform, an integrated set of European software at the state of the art or beyond.

In order to extend the range of numerical tools available in the NURESIM platform the UK Monte
Carlo code MONK R© [3,4,5] has been integrated with the aim of coupling it to thermal-hydraulic
solvers. MONK is an advanced Monte Carlo neutronics code for the solution of criticality safety
and reactor physics problems with a proven track record of application to the whole of the nuclear
fuel cycle. It is a well-established, regulator-recognized, commercial code which is routinely ap-
plied to the solution of industrial-strength problems and in support of nuclear safety cases. The
degree to which a commercial code such as MONK can be integrated in the NURESIM platform
can be used to assess the maturity of the platform and its suitability for deployment to industrial
users.

M&C 2019, Portland, OR, August 25-29, 2019 1388

mailto:simon.richards@woodplc.com


2. NEUTRONICS AND THERMAL HYDRAULICS COUPLING

2.1. General Description of the MONK Monte Carlo Code

MONK is a powerful 3D Monte Carlo code for nuclear criticality safety and reactor physics anal-
yses, forming part of the ANSWERS R© codes suite. ANSWERS codes are widely used in over
thirty countries around the world, and on a range of reactor types including: AGR, BWR, CANDU,
MAGNOX, RBMK, PBMR, PWR, VVER and many experimental reactors. The codes have al-
ready been applied to some of the future reactor technologies (e.g. high temperature and fast
breeder reactors in the Generation IV programme) that are being developed not only for electricity
generation but additionally for other applications. MONK’s advanced geometry modelling and
detailed continuous energy collision treatment provides realistic 3D models for an accurate simu-
lation of neutronic behaviour. MONK’s superhistory powering algorithm [6] provides robust and
reliable estimates of the neutron multiplication factor and other parameters of interest, even for
highly decoupled systems.

MONK has both continuous energy and multigroup capabilities, and is supplied with nuclear data
libraries in both the BINGO continuous energy format and the WIMS 172 group format, based on
evaluations including recent JEFF, ENDF and CENDL libraries. The BINGO continuous energy
collision processor and data libraries support run-time Doppler broadening for accurate tempera-
ture representation, which is important when modelling thermal feedback. An internally-coupled
depletion solver allows MONK to calculate microscopic burnup using either continuous energy or
multigroup data.

MONK features an easy to use, flexible and powerful geometry package comprising two compo-
nents: Fractal Geometry which allows detailed geometries to be constructed hierarchically from
simple components; and Hole Geometry (using Woodcock tracking [7]) which is used extensively
in MONK to provide a wide range of more complicated fine geometric details and to expedite the
specification of commonly-occurring replicating items. The two components can be mixed freely
to define the required geometry in the most efficient way. Additionally MONK is able to import the
model geometry directly from CAD files and track neutrons directly in the CAD geometry without
conversion or approximation.

The Unified Tally module in MONK provides a flexible means for defining tally bodies and meshes
in a way that is decoupled from the underlying model geometry. Any number of independent
scoring bodies may be used, they may overlap, and each may have its own defined scoring energy
group scheme. Optionally the events scored within each mesh may be further broken down by
material. Many of the recent features of MONK are based on Unified Tally meshes, including the
Shannon entropy module, the fission matrix module, the mesh-based burnup capability, and the
AT-in-UT module which tallies reaction rates in a mesh, optionally subdivided by material and
nuclide. The mesh-based burn-up option uses Unified Tally meshes to define both a burnup (BU)
mesh which automates the process of producing unique materials in each depleteable zone, and a
thermal hydraulics (TH) mesh for externally coupling to TH codes. Fission heating powers can
be computed in the TH mesh, and modified material temperatures and densities can be returned to
MONK from a TH code using the same mesh.

The current QA-release version of MONK is MONK10B which was released in July 2017. This is

M&C 2019, Portland, OR, August 25-29, 2019 1389



available for both Windows and Linux platforms. MONK supports MPI parallelization using Open
MPI (Open MPI version 1.6.5 in MONK10B) using a master-slave algorithm. Future releases are
also planned to support hybrid MPI / OpenMP parallelization or some other form of shared memory
parallelism.

MONK has a proven track record of application to the whole of the nuclear fuel cycle and is well
established in the UK criticality community as the de facto standard Monte Carlo criticality code. It
has been in continuous development and use since the 1960s and is developed, distributed, licensed
and actively supported by the ANSWERS Software Service [8], part of Wood.

2.2. Software Description and Development Environment

MONK is developed in Fortran. It is part of a suite of ANSWERS codes known collectively as
the MCANO codes, which include MONK, MCBEND (a Monte Carlo general radiation transport
code), RANKERN (a point kernel gamma shielding code), CACTUS (a method-of-characteristics
module for the WIMS modular reactor physics code suite), and VRFORT (the ray-tracing engine
used for geometry visualization in the ANSWERS Visual Workshop integrated development envi-
ronment). All of the MCANO codes share a common code base and Subversion (SVN) repository,
and a common build system which selects the required source files from the common repository
depending on which code it is building. The size of the MCANO and MONK code bases are shown
in Table 1.

Source files Lines of code

MCANO 1799 649336
MONK 878 368709

Table 1: Size of the MONK and MCANO code bases.

MONK, in common with the other MCANO codes, is distributed to users only in the form of a
binary executable. Each release of MONK is accompanied by a compatible VRFORT ray-tracing
library, supplied as a shared library which can be loaded dynamically by Visual Workshop, the
ANSWERS tool for editing inputs, visualizing geometries, launching calculations and displaying
results. MONK is commercial software which is licensed to users using a FlexNet Publisher li-
cence. To use MONK within the NURESIM platform users will therefore need a valid licence file.
It should be further noted that MONK is subject to export control, and it is therefore necessary
to apply for a UK Government export license before it can be supplied to any user outside of the
United Kingdom. MONK is developed and tested on both Linux and Windows platforms, but for
the purposes of the McSAFE project it is the Linux platform which is of most interest.

2.3. Integration

The NURESIM platform has been developed since 2005 as a reference framework to provide high
quality software tools for safety analysis of light water reactors. It is based upon the SALOME

M&C 2019, Portland, OR, August 25-29, 2019 1390



Figure 1: SALOME three-level architecture [9].

platform, which is a generic, open source integration platform for numerical simulation.

The platform is provided with native modules which handle pre-and-post processing and code
coupling. An important feature of the platform is that it is possible to integrate numerical solvers
in order to couple them to each other and to the native modules. Computational codes are integrated
in the platform as components, and can then be coupled together with a supervision module. The
platform is developed in C++ although all of its interfaces are also exported to Python [9].

SALOME has a modular architecture based on the notion of a component, which is an indivisible
software unit that provides services accessed through an interface, and can be composed of other
components. The platform has a multi-layer architecture, which can be classified into three main
levels:

1. This is the lowest level and contains simulation codes that can be written in any language as
long as they are compatible with C++ (i.e. they can expose an interface which can be called
from C++). In order to facilitate the integration, the software is provided as a shared library,
which contains all the functions of the software. These functions will be then called by the
intermediate layer for the implementation of the component interface.

2. The intermediate level is a C++ class, which declares and implements the interface of the
component. The implementation will call the lower level. The purpose of the component is
to drive the underlying code and to exchange numerical fields and meshes with other codes.

3. The highest level is the presentation tier and is dedicated to the users. The interfaces provided
at this level can be graphical (GUI) or textual (TUI). GUIs should preferably be implemented
in a compiled language (mainly for sake of efficiency).

M&C 2019, Portland, OR, August 25-29, 2019 1391



The generic platform interface is called ICoCo (Interface for Code Coupling) and it is based on the
notion of a Problem. A Problem is seen as an engine which computes a time-dependent solution,
taking as its inputs time-dependent data.

ICoCo is written in C++ and defines an abstract interface that will be implemented by the simu-
lation components. It defines methods that allow initialization and termination of the code, time
advance and sub-iterations, saving and restoring and field exchange [9].

Since the MONK executable is built as a monolithic application is has been necessary to refactor
the code into a dynamic shared library in order to integrate it into NURESIM. This refactoring
mainly involved recasting the MONK main program into a series of Fortran functions and sub-
routines with ISO C binding so that they can be called from C++. These Fortran functions and
subroutines implement the required ICoCo interface and enable MONK calculations to be run by
calling these interface routines from C++ instead of running the MONK main program. Since most
of the core MONK functionality is provided by Fortran modules which did not need any modifica-
tion, the refactoring required to integrate MONK into NURESIM was relatively straightforward.
In order to couple MONK with other codes (primarily the SUBCHANFLOW subchannel thermal
hydraulics codes) it was also necessary to provide methods to exchange data in the specific MED
format used by NURESIM/SALOME.

2.3.1. Version control

Prior to commencing any development work a new SVN repository was created specifically for the
McSAFE project. This is located on the same secure network as the MCANO repository in which
the MONK code is developed. From this network it is not possible to access external SVN or Git
repositories, so it is not possible to link directly to the McSAFE GitHub.

Rather than copying the MONK source code into the McSAFE repository directly, the svn:externals
mechanism is used to map the trunk of the MCANO repository to a directory in the McSAFE
repository. This is done for two reasons:

• to ensure the shared library is always based on the current version of the MONK source, which
is subject to continuous integration testing; and

• to make a clear distinction between standard, verified and validated MONK code and code which
needs to be modified for the McSAFE project.

As the underlying MONK functionality is being added to NURESIM in the form of a dynamic
shared library it is straightforward to provide the latest version to end users at any point without
needing to to rebuild the NURESIM platform.

2.3.2. ICoCo methods

A requirement of the integration approach is that the numerical codes should implement the ICoCo
integrated code coupling methods as far as possible, and as far as is necessary. The significant
methods for MONK are briefly described here. As MONK is a Fortran code most of these methods

M&C 2019, Portland, OR, August 25-29, 2019 1392



have been implemented in Fortran with ISO standard C-bindings, and with explicit C binding
names rather than relying on name mangling †.

setDataFile(): Gives the name of a data file to the code. This optional method is used to
pass a datsets file name to the MONK module. The datsets file is the standard mechanism used by
MONK to identify input, output and data files. If omitted a default datsets file is expected in the
current directory.

setMPIComm(): Gives an MPI communicator to the code, for its internal use. This method is
used to tell the MONK library which MPI communicator to use. This enables MONK to use the
supplied communicator rather than MPI COMM WORLD.

initialize(): Initializes the code using the data provided by calls to setDataFile() and
setMPIComm(). Initialization of MONK includes setting up initial flags and data, starting the
main timer, reading the datsets file and opening the input, output, error and stop files.

terminate(): Terminates the computation, frees the memory and saves whatever needs to
be saved. Cleans up and deallocates arrays, so that initialize() can be called again for a
subsequent time step.

solveTimeStep(): Performs the computation on the current interval, using input fields. MONK
features an internal looping mechanism enabling a range of calculations to be performed in a single
execution from a single input file with one or more varying parameters. The solveTimeStep()
method controls the initialization of the data which need to be reinitialized in each loop, reads the
input file, distributes the data to MONK modules, runs the calculation and produces the results. It
returns false if the calculation fails. After this call (if successful) the solution for the current time
step is accessible in the output file.

validateTimeStep(): Validates the computation performed by solveTimeStep().

getInputFieldsNames(): Returns a list of strings identifying input fields.

getOutputFieldsNames(): Returns a list of strings identifying output fields.

setInputField(): Provides a named input field to the code. The method takes as arguments:
the field name, the MEDCoupling field and its units. Internal methods provide the necessary
formulas to convert between different units.

getOutputField(): Gets a named output field from the code. This method returns the MED-
Coupling output field and takes as arguments the field name and its unit. Internal methods provide
the necessary formulas to convert between different units.

setRequestedLoop(): This optional method is used to select a specific loop in a MONK loop-
ing calculation. Loop selection is achieved using a command line option in the standard version of

†Name mangling is the encoding of function and variable names into unique names so that linkers can separate common names
in the language.

M&C 2019, Portland, OR, August 25-29, 2019 1393



MONK so this method is required to replicate this functionality in the NURESIM framework.

suppressTraces(): This optional method is used to suppress the adding of burnup traces to
materials in a burnup calculation. In the current MONK version, the power distribution can only be
calculated in the right form within a burn-up calculation. The simulation can be accelerated using
this method if the burnup products are not actually required. A future development to MONK will
provide the ability to calculate the power distribution without doing a depletion calculation.

setDebugOption(): Prints additional information about the nuclear mesh and the fields gen-
erated by MONK.

getNuclearMesh(): Generates the nuclear mesh based on information coming from the MONK
input. It takes as an argument the nuclear mesh unit. Internal methods provide the necessary for-
mulas to convert between different units.

getMonkMeshgrid(): Retrieves MONK’s meshgrid information. This information is based on
MONK’s thermal hydraulics input meshgrid definition and is used to generate the nuclear mesh.

checkCellVolumes(): This methods is used to print the volumes of each cell contained in the
nuclear mesh. This method is triggered by setDebugOption().

checkFieldValues(): This method prints the field values belonging to the nuclear mesh.
This method is triggered by setDebugOption().

checkCellBarycenters(): This method is used to print the barycenters of each cell con-
tained in the nuclear mesh. This method is triggered by the setDebugOption().

getMonkPowerDistr(): This method returns the power distribution calculated by MONK.
Currently the calculation of the power distribution can only by triggered by a burnup calculation.

createCoordinates(): This is an auxiliary method that sets the coordinates to create the
nuclear meshgrid.

2.3.3. MONK Shared Library

In order to integrate MONK into the NURESIM platform it has been necessary to convert it from
a standalone executable to a shared library, as described in Section 2.3. Building a static library is
part of the standard MONK build since this is used by the MCANO Fortran unit test framework.
Initial testing of the ICoCo methods was therefore carried out using this static library. However it
is preferable to have a dynamically-loaded library which can be loaded and unloaded as required.
This also allows the library to be updated without needing to relink with the platform. Therefore
the MONK library has also been built as a 64-bit dynamic shared library.

2.3.4. Technical Challenges

It might be expected that refactoring a mature Fortran code like MONK into a dynamic shared
library with C++ interfaces might be a significant challenge. However, this aspect of the integration

M&C 2019, Portland, OR, August 25-29, 2019 1394



of MONK into NURESIM was relatively straightforward. Here the technical issues mostly related
to ensuring that memory was deallocated when no longer needed. In a standard MONK execution
this is not an issue since the memory is automatically released when the application terminates.
But in the NURESIM platform the MONK library is loaded dynamically, requiring the memory to
explicitly be released when no longer required. These issues were solved relatively easily.

A pre-requisite for coupling MONK into the NURESIM platform is downloading and building
the platform itself, and this is not straightforward. NURESIM requires a large number of external
dependencies and makes assumptions about the operating system and the availability of these de-
pendencies either via a network to a Git repository or on local disks. NURESIM has the “SAT”
tool that attempts to provide configuration control on these external dependencies as NURESIM
is built. However, a significant number of changes to the configuration were required for this to
be successful. Given the freedom to use the recommended operating system and access external
repositories many of the difficulties may have been overcome, but this kind of unconstrained IT
freedom is rare in the nuclear industry for reasons related to information security.

The specification of the McSAFE project requires code developers to integrate their numeri-
cal codes in the NURESIM platform using the SALOME three-level architecture described in
Section 2.2. The use of the MEDCoupling library to exchange fields between codes and, to
some extent, the use of a standard ICoCo interface, is valuable and relatively straightforward.
However, the production of intermediate level components and high level supervisors within the
NURESIM/SALOME platform adds considerable complexity to the task of coupling numerical
codes.

2.4. Testing

2.4.1. Fortran Unit Testing

The newly-implemented ICoCo methods have been tested using the ANSWERS Fortran unit test
framework. The unit test framework is linked with the static MONK shared library. These unit
tests are designed to check that the ICoCo methods correctly interface with the MONK library, and
that the data are passed correctly.

2.4.2. C++ Test Program

The ICoCo interface routines have also been tested using a C++ test program which calls the
underlying Fortran routines. This test program dynamically loads the MONK shared library and
runs complete MONK calculations by calling the ICoCo methods which have been exposed to
C++. The results have been compared with results from the released version of MONK10B to
verify that calculations run with the shared library agree with those run with the standard version
of MONK.

This C++ test program serves a further purpose in that it can mimic a standalone MONK execution
by processing command-line parameters in the same way as the standalone MONK executable.
This means that we can submit this executable to the ANSWERS Automated Testing Tool (see
Section 2.4.3) as we do when testing standalone MONK.

M&C 2019, Portland, OR, August 25-29, 2019 1395



2.4.3. ANSWERS Automated Testing Tool

The ANSWERS Automated Testing Tool (ATT) is an in-house product used for continuous in-
tegration testing of all ANSWERS codes. The ATT runs a requested set of test cases using the
executable being tested, compares the results with verified reference results using a set of defined
rules and automatically generates a test report. This integrates with a system known as buildbot,
which also integrates with the source code Subversion repository. Whenever a code change is
committed to the repository buildbot automatically builds all affected codes on all target platforms
then runs a subset of the code tests using the ATT and generates a set of test reports. For MONK
this currently runs 211 unit tests and 172 ATT integration tests after each code commit. Each night
a much larger set of tests is run (currently over 3600 tests for MONK).

As described in Section 2.4.2, the C++ test program can be submitted to the ATT to test the Mc-
SAFE MONK shared library against the standard MONK test sets. These include tests for a wide
range of MONK functionality, including functional testing of the collision processing for every
nuclide in each of the following nuclear data libraries: CENDL-3.1; ENDF-B/VII.0 and ENDF-
B/VII.1; JEF-2.2; and JEFF-3.1, JEFF-3.1.1, JEFF-3.1.2 and JEFF-3.2.

3. VERIFICATION

The verification of the coupled code system is carried out performing a comparison between
MONK and SUBCHANFLOW coupled via NURESIM, and the WIMS/ARTHUR suite. WIMS
is a modular, deterministic reactor physics code suite and ARTHUR is a new subchannel ther-
mal hydraulics module developed specifically for WIMS [10]. Therefore the WIMS/ARTHUR
suite provides a completely independent calculation against which the MONK/SUBCHANFLOW
calculations can be compared.

3.1. Benchmark Specification

A set of benchmarks tests has been proposed for verification of the MONK thermal hydraulics
coupling mechanism. Here we discuss the simplest: a single PWR pincell. The parameters defining
this pincell are shown in Table 2.

Parameter Value

Pellet radius 0.4095 cm
Clad radius 0.4750 cm
Rod pitch 1.2600 cm
Active length 366.00 cm
Power 0.0670 MW

Table 2: PWR pincell benchmark parameters

M&C 2019, Portland, OR, August 25-29, 2019 1396



The fuel pin is modelled in MONK with reflective boundary conditions in radial directions and
vacuum ones in the axial directions, and it is subdivided into 10 axial divisions to represent material
temperature profiles and the coolant density profile.

3.2. Comparison with WIMS

The PWR pincell case has been modelled using WIMS coupled with its own sub-channel module
ARTHUR [11] and the results are shown in Figure 2.

Both coupled schemes use an iterative approach in which the neutronic and the thermal-hydraulic
calculations are iterated until the designated maximum error is reached on a specific set of pa-
rameters. For the NURESIM coupling the exit condition is the error on the multiplication factor
while for WIMS/ARTHUR it is on the fuel temperature. Furthermore, for both coupled schemes a
relaxation factor of 0.6 has been chosen and it has been applied to all the temperature and density
fields.

Figure 2: PWR pincell benchmark results based on MONK-SCF coupling within the
NURESIM platform, compared with WIMS results.

With respect to the neutronic simulation in WIMS, the neutron cross sections have been generated
by the collision probability module FLURIG and, after being homogenized, they have been passed
to the newly-developed module MERLIN. This module, based on the SP3 approach [12], provides
the power distribution needed by the sub-channel code to calculate the temperature and density
distributions.

Where possible, ARTHUR calculation schemes and correlations were aligned to SUBCHAN-

M&C 2019, Portland, OR, August 25-29, 2019 1397



FLOW ones. However, the two codes do not share an equivalent two-phase friction correlation
so that the EPRI one has been chosen for ARTHUR and the Armand one for SUBCHANFLOW
[13]. Other phenomena, like subcooled boiling, have been not modelled at all for the same reasons.

Additionally, ARTHUR has material laws that differ from the ones that can be found in SUB-
CHANFLOW, therefore, appropriate fuel and clad temperature-independent parameters were cho-
sen in both codes in order to carry out the comparison.

Taking into accounts differences concerning correlations, physics models and convergence criteria,
it can be said that WIMS-ARTHUR results agree well with the NURESIM ones and this, in turn,
demonstrates the correctness of the coupling implementation and of the physics models involved.

4. CONCLUSIONS

MONK has been successfully refactored in the form of a dynamic shared library, using ISO stan-
dard C bindings to allow the functionality to be accessed from C++, and tested with a combination
of unit testing and automated regression testing, giving confidence that refactoring MONK as a
shared library does not introduce any systematic errors. The ICoCo methods necessary for cou-
pling MONK to SUBCHANFLOW have also been implemented and tested, and a C++ class has
been implemented to provide the MONK component within the NURESIM platform.

While the integration of MONK into NURESIM has demonstrated that a mature, industry stan-
dard, commercial computational tool can be integrated in the platform, further development of the
platform could significantly improve its utility as an industrial tool.

MONK has also been coupled successfully to SUBCHANFLOW within the NURESIM platform
and the results for the benchmark tests agree well with the WIMS reference calculations. It has
therefore been demonstrated that MONK has been successfully integrated into the NURESIM
platform and successfully coupled to SUBCHANFLOW within that platform.

5. ACKNOWLEDGEMENTS

This work is being carried out as part of the McSAFE project which is funded by the European
Union Horizon 2020 Research and Innovation Framework programme under grant No. 755097
from September 2017 to August 2020.

REFERENCES

[1] C. Chauliac, J.-M. Aragones, D. Bestion, D. G. Cacuci, N. Crouzet, F.-P. Weiss, and M. A.
Zimmermann. “NURESIM - A European simulation platform for nuclear reactor safety:
Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis.” Nuclear
Engineering and Design, volume 241, pp. 3416–3426 (2005).

[2] http://www.salome-platform.org.

[3] S. D. Richards, C. M. J. Baker, P. Cowan, N. Davies, and G. P. Dobson. “MONK and
MCBEND: Current Status and Recent Developments.” Annals of Nuclear Energy, vol-
ume 82, pp. 63–73 (2015).

M&C 2019, Portland, OR, August 25-29, 2019 1398

http://www.salome-platform.org


[4] S. D. Richards, M. Shepherd, A. Bird, D. Long, C. Murphy, and T. Fry. “Recent Develop-
ments to MONK for Criticality Safety and Burnup Credit Applications.” In Proceedings of
International Conference on Mathematics and Computational Methods Applied to Nuclear
Science and Engineering. Jeju, South Korea (2017).

[5] S. D. Richards, G. Dobson, D. Hanlon, R. Perry, F. Tantillo, and T. Ware. “MONK11A:
Status and Plans for the MONK Monte Carlo Code for Criticality Safety and Reactor Physics
Analysis.” In Proceedings of International Conference on Mathematics and Computational
Methods Applied to Nuclear Science and Engineering. Portland, Oregon, USA (2019).

[6] R. J. Brissenden and A. R. Garlick. “Biases in the Estimation of keff and its Error by Monte
Carlo Methods.” Annals of Nuclear Energy, volume 13, pp. 63–83 (1986).

[7] E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. “Techniques used in the GEM
Code for Monte Carlo Neutronics Calculation.” In Proceedings of Conference on the Appli-
cations of Computing Methods to Reactor Problems, ANL-7050, pp. 557–579.

[8] http://www.answerssoftwareservice.com.

[9] N. Crouzet. “Specification of the MC code integration and coupling interface.” McSAFE EU
project.

[10] B. A. Lindley, J. G. Hosking, P. J. Smith, D. J. Powney, B. S. Tollit, T. D. Newton, R. Perry,
T. C. Ware, and P. N. Smith. “Current status of the reactor physics code WIMS and recent
developments.” In Proceedings of Conference on the Applications of Computing Methods to
Reactor Problems, Annals of Nuclear Energy, pp. 148–157.

[11] B. Tollit, A. Charles, A. Cox, K. Kohli, B. Lindley, G. Hosking, P. Smith, M. Dillistone, and
P. Smith. “DEVELOPMENT OF A SUBCHANNEL MODEL WITHIN THE ANSWERS
SOFTWARE SERVICE WIMS REACTOR PHYSICS CODE.” In Proceedings of Confer-
ence on the Applications of Computing Methods to Reactor Problems, PHYSOR 2018.

[12] W. F. M. E. E. Lewis. “Computational methods of neutron transport.” (1984).

[13] U. Imke. “Input Instructions for SUBCHANFLOW 3.0.” (2015).

M&C 2019, Portland, OR, August 25-29, 2019 1399

http://www.answerssoftwareservice.com



