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Abstract

The Monte Carlo neutronics code MONK R© uses run-time Doppler broadening to achieve
highly accurate temperature interpolation. However the tabulated S(α, β) data which
are used to compute the secondary energies and angles in bound thermal scattering
interactions do not lend themselves to interpolation, and it is therefore recommended
to use the closest tabulated temperatures. In some cases this can lead to significant
step changes in reactivity at the mid-point between two tabulated temperatures. The
implementation and testing of a stochastic mixing approach to avoid this approximation
are described. Results from two test cases are presented: the first decouples the effect
of moderator density and demonstrates that the stochastic mixing removes the step
changes in reactivity seen when using the nearest temperature approach; and the second
is a more physically-realistic model at reactor operating conditions, which demonstrates
that the nearest temperature approach does not introduce significant errors in thermal
LEU systems if the moderator density is varied with temperature in a physically-realistic
way.
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1. Introduction

1.1. MONK

MONK R© is an advanced Monte Carlo neutronics code for the solution of criticality
safety and reactor physics problems. It has a proven track record of application to the
whole of the nuclear fuel cycle and is well established as the de facto standard criticality
code in the UK criticality community. Furthermore it is increasingly being used for
reactor physics applications.

The current version of MONK is MONK10B, which was released in 2017 after an
extensive programme of enhancements over the previous versions [1, 2]. MONK continues
to be actively developed and new features and enhancements, including those described
in the current work, will be incorporated into the next release, MONK11A [3].
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MONK’s advanced geometry modelling and detailed, continuous-energy collision treat-
ment provides realistic 3D models for an accurate simulation of neutronic behavior.
MONK calculates the keff for the system modelled using a staged (or iterative) calcula-
tion, with each stage consisting of a fixed number of neutron superhistories [4]. A neutron
superhistory is the set of tracks followed by a neutron and its fission progeny from birth
to absorption or leakage, through a fixed number of fission generations. The maximum
generation number is typically 10, although this can be changed under user control, and
setting this number to 1 reduces superhistory powering to conventional history powering
as used in other Monte Carlo criticality codes.

MONK can perform calculations using a range of collision processing techniques and
data libraries including: the BINGO point energy neutron collision processor and BINGO
format continuous energy nuclear data libraries; the DICE point energy neutron collision
processor and hyperfine group data (13,193 energy groups); and broad group collision
processing using WIMS [5] subgroup data in the standard WIMS 172 group libraries.

The use of the BINGO collision processor and data gives the highest accuracy with
the best representation of the physics, including run-time Doppler broadening [6] such
that any material can be represented at any temperature (above the base temperature
of the available BINGO libraries) with the minimum of user effort (all the user needs to
do is specify the temperature of the material). The ability to treat continuous temper-
ature variation is of particular importance when modelling thermal feedback in coupled
neutronics and thermal hydraulics calculations.

1.2. Bound thermal scattering

For neutrons with energies below a few eV, the thermal motions of scattering nuclides
profoundly affect the outcome of collisions. There are three important processes that
occur here:

• inelastic thermal scatter – a colliding neutron may either gain or lose energy from
the motions of a bound target nucleus and some of the kinetic energy may be
transferred to excited molecular quantum levels, e.g. rotation, vibration;

• incoherent elastic scatter – the wave-like behaviour of the neutron combined with
the random nature of some scattering media gives rise to incoherent elastic scatter
where the neutron is scattered without change of energy. The angular distribution
of the scattered neutrons is forward peaked and continuous; and

• coherent elastic scatter – if the nuclei of the scattering medium are arranged in
a well-defined array (i.e. a crystalline material) then coherent elastic scatter may
occur. Scattering takes place into well-defined directions that are a function of
the wavelength of the incident neutron and the lattice parameters. This type of
scattering is supported by the BINGO collision processor in MONK, but not by
the older DICE collision processor.

For inelastic thermal scattering the cross-sections are given through the use of an
S(α, β) function that is obtained from the analysis of the collisions using quantum me-
chanics. The data describing the S(α, β) function for a set of pre-determined temper-
atures are available in the form of evaluated nuclear data files. This type of scatter
is especially important for bound hydrogen, and MONK currently uses these data for
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hydrogen in water, hydrogen in polythene and hydrogen in zirconium hydride. The
ENDF/B-VII libraries also include these data for zirconium in zirconium hydride and
silicon and oxygen in silicon dioxide (ENDF/B-VII.1 only), and MONK is able to utilize
these data.

MONK also treats incoherent elastic scatter for hydrogen in polythene, hydrogen in
zirconium hydride and, for ENDF/B-VII, zirconium in zirconium hydride. This type of
scattering is negligible for hydrogen in water. Coherent elastic scatter data are present for
graphite, beryllium metal and beryllium oxide, and are utilized by the BINGO collision
processor in MONK.

Thermal scattering in all other nuclides is treated by applying a monatomic free-gas
model. Even for bound nuclei, the monatomic gas model is applied when the incident
energy is well in excess of the energy levels for internal oscillations. The run-time broad-
ening method cannot be used for bound thermal scattering data and so additional data
are stored on the library to allow for temperature interpolation. These additional data
are stored for the temperatures at which S(α, β) data are given in the evaluated files.
The S(α, β) temperatures for each library are given in Table 1. Currently, an interpola-
tion method is applied to the thermal scattering cross-sections but not to the secondary
(emitted) data which are taken from the nearest S(α, β) temperature. In certain cases,
this can result in a significant change in reactivity for a small change in temperature, par-
ticularly where the temperature is near the mid-point between one S(α, β) temperature
and the next. This article describes the implementation and testing of a commonly-used
method to overcome this limitation in an idiomatically Monte Carlo way to smoothly
interpolate the bound thermal scattering secondary data in temperature.

Nuclide JEFF-3.x and CENDL-3.1 ENDF/B-VII.x
H in H2O 293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6,

623.6, 647.2, 800.0, 1000.0
293.6, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0,
650.0, 800.0

H in CH2 293.6, 350.0 296.0 350.0
H in ZrH 293.6, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,

1200.0
296.0, 400.0, 500.0 600.0, 700.0, 800.0 1000.0,
1200.0

D in D2O 293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 643.9 293.6, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 650.0
C in graphite 293.6, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,

1200.0, 1600.0, 2000.0, 3000.0
296.0 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0, 1600.0, 2000.0

Be and O in BeO 296.6, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0

296.6, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0

Be in Be metal 296.0, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0

296.0, 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0

Z in ZrH Not available 296.0 400.0, 500.0, 600.0, 700.0, 800.0, 1000.0,
1200.0

Si and O in SiO2 Not available 293.6, 350.0, 400.0, 500.0, 800.0, 1000.0, 1200.0

Table 1: Temperatures (K) at which S(α, β) data are tabulated in the BINGO nuclear data libraries [7].

2. Methods

In the BINGO collision processor in MONK the temperature of any material may be
set to any temperature Tbroad above the base temperature of the BINGO library (this is
293.6 K for currently released BINGO libraries but will be extended to lower temperatures
for future libraries). If Tbroad is within 0.5 K of a BINGO library temperature then
the Doppler broadened nuclear cross-sections are obtained directly from the library file,
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otherwise run-time Doppler broadening is employed to determine the Doppler broadened
cross-section at temperature Tbroad.

The S(α, β) data needed to calculate secondary parameters for bound thermal scat-
tering are stored in the BINGO library at a small number of fixed temperatures, and there
is no straightforward way of interpolating these data analytically. The ENDF-6 Formats
Manual [8] states that “Experience has shown that temperature interpolation of S(α, β)
data is unreliable. It is recommended that cross sections be computed for the given
moderator temperatures only. Data for other temperatures should be obtained by inter-
polation between the cross sections.” This recommendation is followed in the BINGO
collision processor and the inelastic scattering cross section is interpolated between the
temperatures at which the S(α, β) data are given. However, this simple interpolation is
not applicable to the calculation of secondary energy and angle, and the BINGO collision
processor therefore uses the S(α, β) data at the closest tabulated temperature.

For T1 ≤ Tbroad ≤ T2, where T1 and T2 are the two adjacent tabulated temperatures
bounding Tbroad, the following condition is tested:

|T1 − Tbroad| ≤ |T2 − Tbroad| (1)

If this condition is true then the S(α, β) data tabulated at T1 are used, otherwise
the data at T2 are used. In the stochastic mixing method we replace this deterministic
selection of the S(α, β) data with a sampling method which randomly selects the data
tabulated at T1 and T2 with probabilities based on where Tbroad lies in the range T1 to
T2.

The probability p1 of selecting the data at the lower temperature T1 is given by:

p1 =
(T2 − Tbroad)

(T2 − T1)
(2)

At each collision the following condition is tested:

ξ < p1 (3)

where ξ is a pseudo-random number in the range 0 to 1, taken from a uniform dis-
tribution. If this condition is satisfied then the S(α, β) data at T1 are used, otherwise
the data tabulated at T2 are used. As a new pseudo-random number is sampled at each
collision the effect is to randomly choose the T1 data with probability p1 and the T2 data
with probability p2 = 1− p1.

The results of the sampling algorithm for all possible temperature values are shown
in Table 2. Special cases exist if Tbroad is less than the lowest tabulated temperature
or greater than the highest tabulated temperature. In these cases the value of p1 will
be greater than 1 or less than 0 respectively. Although these are strictly not valid
probabilities the correct result is obtained when evaluating the conditional expression.

It is noted that the stochastic mixing method has been commonly employed in Monte
Carlo neutronics codes for several decades. However, perhaps because it falls into the
category of “obvious” computational techniques, it appears not to have been well docu-
mented in the literature.

The method described in this section has been implemented as an option in the
BINGO collision processor in the current development version of MONK11A alongside
the existing nearest temperature approach, such that the two methods may be compared.
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Temperature p1 Result
Tbroad < T1 p1 > 1 T1 is always used

(only occurs if T1 is the lowest tabulated value)
Tbroad = T1 p1 = 1 T1 is always used
T1 < Tbroad < T2 0 < p1 < 1 T1 is used with probability p1

T2 is used with probability 1− p1

Tbroad = T2 p1 = 0 T2 is always used
Tbroad > T2 p1 < 0 T2 is always used

(only occurs if T2 is the highest tabulated value)

Table 2: Results of the stochastic sampling algorithm.

3. Example calculations

3.1. Single pincell

3.1.1. Model description

A single pincell integration test has been used to demonstrate the effect of the stochas-
tic mixing method. This test case consists of a single 3.82 wt% enriched UO2 unclad
fuel rod of radius 0.48 cm, in the centre of a water-filled box with x and y dimensions of
1.2 cm. Reflecting boundary conditions are applied on all faces to represent an infinite
array of fuel rods with a pitch of 1.2 cm. The hydrogen is modelled as 1H bound in water
and the oxygen is modelled as 16O.

The fuel temperature in this model is fixed at 500.0 K and the water temperature
is varied between 293.6 K (the base temperature of a standard BINGO library) and
1100.0 K (which is greater than the maximum S(α, β) tabulated temperature for water
in the JEFF-3.2 BINGO library used. Calculations are performed at each of the eleven
tabulated temperatures (see Table 1) and additionally at points 0.1 K above and below
the mid-points between each library temperature in order to demonstrate the step change
in k∞ at the mid-points. A final point at 1100.0 K is used to demonstrate the behaviour
at temperatures above the maximum S(α, β) tabulated temperature. A corresponding
point below the minimum temperature of 293.6 K is not permitted since it is below the
base temperature of the BINGO library.

It is important to note that the water density is kept fixed at 0.99 g/cc for all temper-
atures in this integration test to allow the effect of the bound thermal scattering model
to be decoupled from any effects of changing moderator density. While this is clearly
non-physical it is not unusual for criticality safety analysts to model the moderator at the
maximum expected or maximum theoretical density in order to maximize the reactivity,
thereby ensuring that the criticality safety criterion is conservatively satisfied.

All MONK calculations were run with a target standard deviation of 0.0002 with the
JEFF-3.2 BINGO library, using a development version of MONK11A [3]. The calcula-
tions were run in parallel using the OpenMPI version of MONK running on 16 cores of
a Linux HPC.

3.1.2. Results

The results from the pincell test case are plotted in Figure 1. This shows the results
of using the current nearest temperature treatment together with the results obtained
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Figure 1: Results of the pincell integration test, comparing interpolation methods (error bars indicate
±3 standard deviations).Note that the linear interpolation curve is almost exactly over-plotted by the
stochastic mixing curve.

using the stochastic mixing methodology described in Section 2. In addition to these two
sets of results Figure 1 also shows the results obtained by linearly interpolating between
results obtained at tabulated S(α, β) temperatures only, i.e. points between tabulated
temperatures are obtained by linearly interpolating between the results calculated at the
two bounding tabulated temperatures.

The results obtained using the nearest temperature approach show the expected step
changes at the mid-points between tabulated temperatures where the collision processor
switches from the data at the lower bounding temperature to the data at the upper
bounding temperature. These step changes are non-physical and are an artefact of using
the nearest temperature data without interpolation.

The results obtained using the stochastic mixing method completely eliminate the
step changes seen in the results based on nearest temperature values and are statistically
equivalent to the linear interpolation approach without requiring any post-processing.
The two methods agree, to within the stochastic uncertainty, at the tabulated tempera-
tures, and the stochastic mixing method correctly interpolates at intermediate tempera-
tures, giving confidence that the method behaves as intended.

Table 3 shows the differences between the results obtained using the nearest temper-
ature method and the stochastic mixing method at temperatures 0.1 K either side of
the mid-points between adjacent tabulated temperatures. These results indicate that,
for this model, using the nearest temperature approach can underestimate the multipli-
cation by up to 470 pcm for temperatures just below the mid-point, and overestimate
the multiplication by up to 430 pcm for temperatures just above the mid-point. The
combined standard deviation from the pairs of calculations from which these differences
are obtained is about 28 pcm.
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Temperature (K) k∞ ∆k (pcm)
Nearest Interpolated

308.5 1.3457 ± 0.0002 1.3496 ± 0.0002 -390 ± 28
308.7 1.3524 ± 0.0002 1.3493 ± 0.0002 +310 ± 28
348.5 1.3528 ± 0.0002 1.3575 ± 0.0002 -470 ± 28
348.7 1.3620 ± 0.0002 1.3577 ± 0.0002 +430 ± 28
398.5 1.3620 ± 0.0002 1.3652 ± 0.0002 -320 ± 28
398.7 1.3687 ± 0.0002 1.3654 ± 0.0002 +330 ± 28
448.5 1.3686 ± 0.0002 1.3715 ± 0.0002 -290 ± 28
448.7 1.3737 ± 0.0002 1.3711 ± 0.0002 +260 ± 28
498.5 1.3736 ± 0.0002 1.3763 ± 0.0002 -270 ± 28
498.7 1.3779 ± 0.0002 1.3759 ± 0.0002 +200 ± 28
548.5 1.3780 ± 0.0002 1.3794 ± 0.0002 -140 ± 28
548.7 1.3817 ± 0.0002 1.3798 ± 0.0002 +190 ± 28
598.5 1.3811 ± 0.0002 1.3824 ± 0.0002 -130 ± 28
598.7 1.3840 ± 0.0002 1.3823 ± 0.0002 +170 ± 28
635.3 1.3841 ± 0.0002 1.3843 ± 0.0002 -20 ± 28
635.5 1.3852 ± 0.0002 1.3847 ± 0.0002 +50 ± 28
723.5 1.3848 ± 0.0002 1.3882 ± 0.0002 -340 ± 28
723.7 1.3910 ± 0.0002 1.3880 ± 0.0002 +300 ± 28
899.9 1.3903 ± 0.0002 1.3929 ± 0.0002 -260 ± 28
900.1 1.3950 ± 0.0002 1.3932 ± 0.0002 +180 ± 28

Table 3: Differences between the nearest temperature approach and the stochastic mixing approach
at temperatures either side of the mid-points between adjacent tabulated temperatures. A negative
difference indicates that the nearest temperature approach under-predicts relative to the interpolated
method, while a positive difference indicates that the nearest temperature method over-predicts.
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3.1.3. Run Time Performance
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Figure 2: CPU Time and wall clock time for each calculation of the pincell test case running in parallel
on 16 cores of a Linux HPC.

The single pincell test case described in Section 3.1.1 was run in parallel on 16 cores
of a Linux HPC. The CPU times and elapsed (“wall clock”) times for each calculation are
shown in Figure 2. These results show that there is no significant, systematic difference
in the run times between the two methods and that the stochastic mixing method does
not add to the computational cost of the calculation.

It can be seen from these results that the 523.6 K calculations run in noticeably less
time than most of the other calculations and that the 293.6 K and 1000.0 K runs are
very significantly quicker, by more than a factor of two. This is to be expected because
the BINGO library used for these calculations includes Doppler broadened cross-section
data for both 16O and 1H in H2O at 293.6 K and 1000.0 K, so the BINGO run-time
Doppler broadening method is not invoked at all at these temperatures. At 523.6 K the
library has Doppler broadened cross-section data for 1H in H2O, but not for 16O, so the
run-time Doppler broadening method is invoked for oxygen only in this calculation to
Doppler broaden the cross-section from the 500 K library temperature to the 523.6 K
moderator temperature.
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3.2. PWR Minicore

3.2.1. Model description

In order to investigate the effect of stochastic mixing in a more physically-representative
model under reactor-like conditions a 3x3 fuel assembly (FA) minicore model has been
used [9]. The PWR fuel assemblies in this model are based on TMI-1, details of which
are given in Table 4 and Table 5 [9]. Each assembly is a 15x15 array with 16 guide tubes,
1 instrumentation tube, and 208 Zircaloy clad fuel rods, four of which are gadolinia
rods containing integral Gd burnable poisons. The mixture of the gadolinia rods is
Gd2O3+UO2 with density of 10.144 g/cc, enrichment of 4.12 wt% and Gd2O3 concen-
tration of 2 wt%. The remaining fuel rods contain fresh UO2 fuel (no burnup) with an
enrichment of 4.85 wt% and density of 10.283 g/cc.

Parameter Value
Unit cell pitch (mm) 14.427
Fuel pellet diameter (mm) 9.391
Fuel pellet material UO2

Fuel density (g/cc) 10.283
Fuel enrichment (wt%) 4.85
Cladding outside diameter (mm) 10.928
Cladding thickness (mm) 0.673
Cladding material Zircaloy-4
Cladding density (g/cc) 6.55
Gap material He (modelled as void)
Moderator material H2O

Table 4: Parameters of the TMI-1 fuel pincell used in the 3x3 PWR minicore model [9].

The 3x3 PWR minicore model comprises nine TMI-1 fuel assemblies as shown in
Figure 3. The central assembly has the control rods fully inserted while the rest of the
assemblies are modelled with control rods fully withdrawn.

Hot full power (HFP) conditions for the benchmark model are given in Table 6, but
for the purposes of this investigation we replace the fixed moderator temperature and
density with nominal, but physically reasonable, axial profiles as shown in Figure 5. The
active length of the fuel rod is divided into ten equal slices having unique temperatures
and densities, with two additional slices representing the upper and lower reflector re-
gions, as shown in Figure 4. Event counts (unnormalized reaction rates) are tallied in the
same axial regions. No attempt is made to modify the HFP critical boron concentration
to account for the modified moderator temperatures and densities, so a small departure
from critical conditions is to be expected. Since we are interested in the temperature
dependence of the bound thermal scattering in the moderator, the fuel and clad tempera-
tures retain their fixed HFP values so that the temperature dependence of the moderator
is decoupled from other effects such as the Doppler broadening of the fuel resonances.
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Parameter Value
Fuel assembly dimensions 15 x 15
Number of fuel rods per FA 208
Number of guide tubes per FA 16
Number of instrumentation tubes per FA 1
Number of gadolinia rods per FA 4
Fuel rod pitch (mm) 14.427
Fuel rod outside diameter (mm) 10.922
Fuel pellet diameter (mm) 9.390
Cladding thickness (mm) 0.673
Guide tube outside diameter (mm) 13.462
Guide tube inside diameter (mm) 12.649
Instrumentation tube outside diameter (mm) 12.522
Instrumentation tube inside diameter (mm) 11.201
Fuel assembly pitch (mm) 218.110
Gap between fuel assemblies (mm) 1.702

Table 5: Parameters of the TMI-1 fuel assembly used in the 3x3 PWR minicore model [9].

Parameter Value
Fuel temperature (K) 900.0
Clad temperature (K) 600.0
Moderator (coolant) temperature (K) 562.0
Moderator (coolant) density (g/cc) 0.7482

Table 6: Hot full power conditions for the TMI-1 PWR fuel assembly [9].
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Figure 3: Radial slice of the 3x3 PWR minicore model, showing the nine fuel assemblies (the central
one with control rods inserted) surrounded by the reflector (lilac). The control rods are shown in yellow
and the Gd2O3+UO2 integral burnable poison fuel rods are shown in dark blue.
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Figure 4: Axial slice of the 3x3 PWR minicore model, showing the active region divided into ten equal
slices, the upper reflector material (orange) and the lower/radial reflector material (lilac).
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Figure 5: Axial temperature and density profiles used in the PWR minicore.
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3.2.2. Results

Figure 6 compares the axial variation of the fission counts in the minicore model
calculated using the nearest temperature approach and the stochastic mixing approach.
This is the result of combining four independent calculations, each of which was run with 3
million post-settling (i.e. after the fission source distribution is converged) superhistories
with a maximum of 100 generations per superhistory. This resulted in approximately
300 million neutron histories in each of the four calculations. The maximum stochastic
error on the fission counts in any axial slice in each of the four calculations is less than
1%, so the maximum combined error for the four runs is less than 0.5%.

On the scale used in Figure 6 it is difficult to assess the differences between the two
methods, so Figure 7 shows the difference between the two sets of calculations expressed
as a percentage. Here it may be seen much more clearly that the nearest temperature
method over-predicts the fission counts by up to about 2% in the lower axial regions,
and under-predicts by up to about 3% in the upper axial regions, relative to the results
obtained using the stochastic mixing method.

The combined results from the four independent calculations using the nearest tem-
perature method gave a keff of 1.022573 ± 0.000027, while the result obtained using
the stochastic mixing method gave 1.022591 ± 0.000027. These results agree to within
the combined standard deviation, showing that the keff estimator in this case is not
significantly altered by the stochastic mixing method.
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Figure 6: Axial variation of fission counts in the PWR minicore model, calculated using the nearest
temperature approach and the stochastic mixing method.
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the PWR minicore calculated using nearest temperatures and stochastic mixing. Negative values indicate
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approach, while positive values indicate that the nearest temperature approach over-predicts.
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4. Conclusions

A stochastic mixing method has been implemented in the BINGO collision processor
in a development version of MONK11 for interpolating the secondary data from bound
thermal scattering reactions with respect to temperature. Instead of selecting the near-
est tabulated temperature data the stochastic mixing method randomly selects either
the upper or lower bounding temperature at each collision, with probabilities weighted
according to how close the temperature is to the bounding temperatures.

Results presented for a single pincell model over a wide range of temperatures show
the method to be working as expected with no run-time performance penalties. The
stochastic mixing method eliminates the non-physical step changes in reactivity which can
be observed near the mid-points between adjacent tabulated S(α, β) temperatures when
using the nearest tabulated temperature approach. Although this model used the non-
physical approach of fixing the moderator density over a wide range of temperatures, this
is a conservative approach commonly used in criticality safety assessments, and therefore
eliminating the approximation of using the nearest S(α, β) is a valuable improvement to
MONK.

The results from a more physically-realistic model at reactor conditions showed no
significant effect on the keff of the system, giving confidence that nearest temperature
approximation does not introduce significant errors in keff for thermal, LEU systems
when the moderator density is varied in a physically-realistic manner. However, small
variations in the axial distribution of fission counts were observed which may be impor-
tant in high fidelity burn-up or burn-up credit calculations, or when modelling thermal
feedback in coupled neutronics and thermal hydraulics calculations.

Stochastic mixing is not an exact method, rather it is an approximation to using
the correct temperature-dependent data. Nevertheless it has been shown to yield good
results and is easy to implement in Monte Carlo codes.

The stochastic mixing method is expected to become the default method in the next
release of MONK, while the nearest temperature approach will be retained as a user
option to allow direct comparisons between methods.
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