
CODEMORE: A FAIR SYSTEM FOR DISTRIBUTING PARAMETER SEARCHES ON A CLUSTER COMPUTER
SYSTEM

Paul HULSE, David DEWAR, Andrew COOPER

British Nuclear Group,

Risley, Warrington, Cheshire, UK.

and

Pat COWAN

Serco Assurance,

Winfrith Technology Centre, Dorchester, Dorset, UK

ABSTRACT

Criticality and radiation shielding considerations are two
essential aspects of any safety case for a nuclear facility.
In assessing these, it is usual to use a specialist computer
code. The most accurate solution method is often Monte
Carlo particle tracking, as used in the MONK and
MCBEND criticality and shielding codes. It is now
possible using CodeMore to do parametric searches of a
model space using such codes on a cluster computer and
to provide results with increased levels of confidence.

CodeMore has been developed as part of the Nuclear
Codes Development (NCD) partnership between British
Nuclear Group and Serco Assurance, to enable a fair
distribution of parameter searches on a cluster computer
system when using MONK and MCBEND. CodeMore
extends the LANL WORM program so that it is
compatible with the parameterisation syntax of MONK
and MCBEND, and so that it interacts with a job
scheduling system. CodeMore has been demonstrated
successfully with both an in-house queuing system, and
the OpenPBS scheduling system.

In this paper, we present the CodeMore program and
show how it interacts with the job queuing system. We
also show how CodeMore has been used operationally to
significantly reduce the time needed to perform large
classes of criticality problems, by automating the route to
the solution and reducing the requirement for avoidable
user input to the optimisation process. Importantly, we
show how the availability of automated tools such as
CodeMore, when combined with large cluster computer
systems, have the potential to significantly alter the way
in which shielding and criticality calculations are done,
and to make possible calculation routes which were
previously untenable.

1. INTRODUCTION

CodeMore has already been introduced as a method of
distributing a Monte Carlo shielding calculation on a

Beowulf cluster computer[1]. In general, CodeMore can
distribute a parameterised criticality or dose assessment
calculation over a cluster, significantly reducing the time
taken to obtain a solution to complex questions in
criticality safety or shielding analysis.

CodeMore extends the WORM program[2] to interact
fairly with a job scheduling system. WORM was written
primarily for MCNP[3], and it extends the input syntaax
with embedded parameters and control structures. With a
parameterised case, WORM parses the case file to
produce a number of input files, one for each set of
parameters. In this way WORM acts as a pre-processor
such as m4[4] or cpp[5]. However WORM, and hence
CodeMore, is in many ways more powerful then m4 or
cpp since it allows easy access to looping constructs and
the use of fully functional Perl[6] subroutines. So Perl
can be used, for example, to calculate atom number
densities given a parametric material definition in an
input file.

One of the design limitations of WORM is that it does not
interact with a job scheduling system. WORM creates
the input files from a parameterised job, however the
analyst has to submit each job to a queuing system
separately. Since most queuing systems operate on a
First-In, First-Out (FIFO) basis, this can cause significant
delays when used in a production environment, where
there is a requirement for high priority jobs to override
survey calculations. Although it is possible to allow for
this by setting up multiple queues, it is more flexible if
the parameterisation program takes care of all job
submission and ensures that each parameterised job does
not flood the queues. This is CodeMore’s principal
extension to WORM.

In addition, CodeMore internally converts the
parameterisation syntax for the ANSWERS codes
MONK and MCBEND to WORM syntax, so existing
jobs using MONK/MCBEND parameterisation can be
run using CodeMore.

2. CODEMORE

CodeMore uses WORM as its core code to handle
parameterisation, but extends it to interact with various
queuing systems. CodeMore is called with the
parameterised input file as an argument. It then looks for
a job control file that specifies what nuclear data libraries
are to be hooked up and how the code is to be started.
The CodeMore harness program creates a new
executable, sets this running in the background and
relinquishes control to the user.

The background program run by CodeMore monitors a
single queue, checking for the number of currently
scheduled jobs being below a high water mark. If this is
true the next input file is immediately generated from the
case file with the next set of parameters, and submitted to
the queue. Between checking the queue and submitting
jobs, CodeMore sleeps for a short period, with the sleep
interval being randomly perturbed to prevent a first come
takes all situation between competing CodeMores.

Multiple instances of CodeMore can effectively co-
operate via the queuing mechanism, since CodeMore
submits a single job each time it wakes, rather than
immediately submitting jobs up to the high water mark.
Using this mechanism, CodeMore can also co-operate
with other users on the system, effectively getting out of
the way if a high priority job arrives.

3. USING CODEMORE

Setting up a job to run using CodeMore is very
straightforward. As an example, consider test case
ex1.nm in the ANSWERS MONK 8b ru0 test suite.
This models a stainless steel clad plutonium oxide rod,
52cm long by 8.5cm radius. The cladding has a 0.5cm
curved wall thickness and 1cm end cap thickness.
Consider the case where we wish to vary the length, L,
between 40.0 and 152.0cm in steps of 1cm, and the
radius, R, between 8.5 and 10.5cm in steps of 0.1cm.
Figure 1 shows the necessary changes, in bold text, to the
standard test case required to do this. Note that this uses
WORM parameterisation, however MONK/MCBEND
parameterisation could also be used.

BEGIN MATERIAL GEOMETRY

PART 1 NEST

ZROD M1

0.0 0.0 1.0

<R=8.5:10.5:0.1> <L=40:152:1>

ZROD M2

0.0 0.0 0.0

<R+0.5> <L+2.0>

END

Figure 1 - Parameterised MONK input file

Submitting a case parameterised as Figure 1 onto the
BNFL Beowulf system (84 processors, each 2 GHz Intel
Pentium 4 with 512MB RAM) using CodeMore creates a
total of 2373 input/output pairs, with a total job run time
of approximately 2 hours. The MONKCheck program
[7], another code created as part of the NCD partnership,
produces a summary table of the output files, which can
then be processed in a number of ways. For example, it
is possible to load this table into a spreadsheet and
quickly produce a graph showing k-effective isopleths, as
shown in Figure 2.

Figure 2 - CodeMore generated isopleths for the pin
model

4. OPERATIONAL EXPERIENCES WITH
CODEMORE

CodeMore significantly increases the capabilities offered
to shielding and criticality modellers, especially when
combined with a large computer cluster. As shown in
section 3, CodeMore makes it simple to parameterise an
existing model and do “what if” calculations. It is now
routine, using CodeMore and a cluster, to run thousands
of MONK cases for one analysis, either to find the
optimal solution or to demonstrate that a particular
solution is a worst case. The sheer volume of output data
could become a problem in itself, without tools such as
MONKCheck to handle the data flows and to provide a
status check of the runs.

The remainder of this section looks at applications where
the availability of CodeMore has radically changed how
shielding and criticality calculations can be done.

K-effective Isopleth production

Before the introduction of high performance computers
the production of k-effective isopleths was a slow and
laborious process. In the past these were generated by
choosing parameter values where the expected value of k
would occur and then doing a small parametric study by
hand. When coupled with a distributed computer system,
CodeMore can quickly generate the base data for these
isopleths, with minimum assessor involvement and with
greater precision than before. Because of the flexibility
of the WORM language used in CodeMore, it is also

possible to embed functions to perform complex tasks.
For example, a function could be constructed to provide
solution densities to give a constant mass of fissile
material in a complex shape. Thus isopleths can be
generated for systems which would have previously been
thought untenable.

What if? modelling

Recent work within British Nuclear Group in the design
of a new facility has very effectively used CodeMore as
an integral part of What if? modelling for its design.
Criticality safety has to be ensured, along with structural,
heat and ventilation requirements. CodeMore was used
to rapidly turn around a full criticality analysis as part of
an interative design process. Potential solutions to this
multiple criteria problem were found, and it was possible
to work through to an acceptable design within a very
short period.

Parallelisation of shielding calculations

CodeMore can be used to split a complex shielding
calculation into a number of smaller calculations[1], and
then distribute these cases onto a cluster computer. The
results from the hundreds or thousands of output files can
then be combined to produce a single result. Because
these short cases use all the processors in a cluster, this
method gives a solution much more quickly than on a
uni-processor. Also, since each sub-job runs
independently it is not necessary to dedicate part of a
cluster computer to a single run, such as would be
necessary with a PVM or MPI based solution.

5. FURTHER WORK

CodeMore is being further developed both to improve its
portability and user image. CodeMore is developed in
Perl, for which run time environments exist for various
flavours of Unix, Microsoft Windows and Apple
Macintosh OS. The principal portability issue is
interfacing to different job scheduling systems. To date
CodeMore can support an internally developed BNFL
batch system and the OpenPBS system [8]. A principal
future aim of this project is to extend the number of
queuing systems supported, including for example
Condor [9].

Improvements to the user image centre around possible
future developments in fully integrating the CodeMore
program within the Visual Model Editor system described
elsewhere [10].

6. ACKNOWLEDGEMENTS

Thanks to Tom Jones, and the Los Alamos National
Laboratory, for making the WORM code freely available
for use in derivative works such as CodeMore. See
http://WORM.csirc.net/ for further details.

7. REFERENCES

[1] David Dewar, Paul Hulse, Andrew Cooper and Nigel
Smith, “Efficient heterogeneous execution of Monte
Carlo Shielding Calculations on a 'Beowulf' Cluster”, in
10th International Conference on Radiation Shielding
(ICRS-10), and 13th Topical Meeting on Radiation
Protection and Shielding (RPS-2004), Madeira, Portugal

[2] Tom Jones, “WORM (Write Once, Run Many) A
General Purpose Input Deck Specification Language”,
Los Alamos report 99-3594, 2000

[3] X-5 Monte Carlo Team, “MCNP – A General Monte
Carlo N-Particle Transport Code, Version 5, Volume 1:
Overview and Theory”, Los Alamos Report LA-UR-03-
1987, April 24 2004

[4] Brian W. Kernighan and Dennis M. Ritchie, “The M4
Macro Processor”, in Unix Seventh Edition Manual,
Volume 2, 1979

[5] GNU Project, GNU C Preprocessor Manual,
Version 4.0.0, 2005

[6] Larry Wall, Tom Christiansen and Jon Orwant,
Programming Perl, O’Reilly, 2000

 [7] Keith Searson, “MONKCheck presentation”, The
ANSWERS Seminar, 13 - 15 May 2003,
http://www.sercoassurance.com/answers/
resource/areas/seminar/archive.htm
[checked 3rd May 2005]

[8] OpenPBS Administration Guide,
http://www.openpbs.org/docs.html [checked
3rd May 2005]

[9] Condor Team - University of Wisconsin-Madison,
Condor Version 6.6.9 Manual,
http://www.cs.wisc.edu/condor/manual/v
6.6/ [checked 3rd May 2005]

[10] David Dewar, Andrew Cooper, Paul Hulse and Pat
Cowan, “VME – A Visual Model Editor for the
ANSWERS shielding and criticality codes”, in
Proceedings of the 11th International Conference on
Information Systems Analysis and Synthesis: ISAS
2005 and The 2nd International Conference on
Cybernetics and Information Technologies, Systems
and Applications: CITSA 2005, July 14-17, 2005,
Orlando, Florida, USA

