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ABSTRACT 
 
There are benefits in some criticality safety assessments of being able to analyse random arrays 
of rods in various vessels.  This may provide a better indication of reactivity for a realistic 
situation compared to approximations (for example regular arrays of rods) that may be unduly 
conservative or indeed under-predict reactivity.  This paper describes a method for generating a 
model and performing criticality calculations for such a random arrangement.  The method has 
been implemented as a prototype development in the MONK Monte Carlo criticality code.  The 
development uses existing facilities for particle tracking available in the MONK code, including 
the use of two different but complementary geometry packages, which employ different methods 
of particle tracking: simple body geometry and HOLE geometries.  The use of both geometry 
models for this application has facilitated testing, particularly as the simple body geometry 
package includes in built self-testing routines.  The algorithm for generating the array of rods 
first samples for a candidate rod, characterized by its location and orientation.  The rod is then 
accepted or rejected depending on whether it satisfies the physical constraints of the system.  In 
this manner, packing fractions of up to about 28% have been achieved with a rod length to radius 
ratio of around 10 to 1. The paper demonstrates that the algorithm is functioning correctly, and 
provides some comparisons with simplified modelling.  The implementation makes use of the 
HOLE geometry option in MONK, which is widely used to facilitate the generation of complex 
geometries. 
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1. INTRODUCTION 
 
There are benefits in some criticality safety assessments of being able to analyse random arrays 
of rods in various vessels.  This may provide a better indication of reactivity for a realistic 
situation compared to approximations (for example regular arrays of rods) that may be unduly 
conservative or indeed under-predict reactivity.  If this arrangement is modelled using regular 
arrays of rods, then inaccurate criticality calculations may result.  The purpose of the current 
work is to develop a method where the rods are modelled in a more realistic manner.  To achieve 
this, a random arrangement of rods is first generated, and then particles can be tracked by using 
either simple body geometry models, or a new HOLE geometry (see below). The method 
described has been implemented as a prototype in the Monte Carlo criticality code MONK [1].  
Over the last decade the development of MONK has been done as part of the Nuclear Codes 
Development (NCD) partnership between British Nuclear Group Sellafield Ltd and Serco 
Assurance, with the code being distributed and maintained by Serco Assurance’s ANSWERS 
Software Service.  
 
The ANSWERS software service provides a suite of codes used world wide for reactor physics, 
radiation shielding and nuclear criticality.  Two of the major codes offered by ANSWERS, 
MCBEND and MONK are Monte Carlo codes that use a common geometry model for particle 
tracking.  The MCBEND code [2] is used in the shielding area, whereas the MONK code is used 
for criticality and reactor physics. 
 
The implementation of a random rod facility in MONK is related to other recent extensions for 
random placement of spheres that have been used for pebble bed reactor geometries [3].  A 
significant difference with rods compared to spheres is that orientation becomes an issue as well 
as location. 
 

2. GEOMETRY MODELLING 
 
The ANSWERS Monte Carlo codes use two different, but complementary, geometry models: 
simple body geometry and HOLE geometries.  In simple body geometry, ZONES can be defined 
by the inclusion or exclusion of the simple bodies thus generating more complex shapes.  
Furthermore the bodies may be assembled into structures called PARTS. PARTS may be 
included within other PARTS and a given PART may be included in different positions within the 
geometry.  In this manner models may be generated in a hierarchical fashion, allowing great 
flexibility in terms of detail and scale.  To implement the simple body geometry, particles are 
tracked to boundaries where a change of material occurs.  The code must calculate the distance to 
the ZONE boundaries in order to determine whether an event (such as a collision) takes place 
before the boundary. 
 
A special type of PART is a structured PART.  An example of such a structured PART is a 
CLUSTER PART, which consists of a containing body and a number of inner bodies that do not 
intersect with any other inner body, and are completely within the containing body. 
 
The complementary geometry model is the use of HOLE geometries with Woodcock tracking.  
In this the mean free path used across the geometric region is the minimum from all the 
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materials, and the idea of fictitious as well as real events is introduced.  After an event such as a 
collision occurs, the code determines what material the event has taken place in, and then decides 
if it is a real event or a fictitious event based on the ratio of the minimum mean free path to the 
real mean free path.  In this manner, distances to boundaries need not be calculated, merely 
whether or not a point is within a body.  This is often an easier task to perform.  A number of 
HOLE geometries are built into the code, to represent in a flexible manner commonly occurring 
geometries.  These include: the SQUARE HOLE which can be used to model a lattice of cladded 
rods, possibly surrounded by a square shaped wrapper; the GLOBE HOLE that can be used to 
model rods in a series of concentric rings, and so for example model an AGR fuel element; a 
PLATE hole which allows a number of materials to be modeled, separated by parallel planes. 
 
Simple body geometry and HOLE geometries can be used together to good effect.  In the paper 
we use both methods to model the random arrays of rods.  Once the location and orientation of 
the rods has been generated, the simple body geometry can be used without further code 
modification.  For the HOLE geometry, a new HOLE type has been implemented to model the 
random array or rods which we call the RANDROD HOLE. 
 

3. MODELLING DROPPED RODS 
 
To model the dropped rod geometry, the first stage is to generate the locations of the rods.  It has 
been assumed that the layout can be simulated by rods with effectively random location and 
orientation.  One way of achieving this is to successively add rods by generating a rod location 
and orientation, and accepting the rod if the rod lies within the containing vessel, and does not 
intersect with any previously accepted rod.  Otherwise the rod is rejected.  This process is 
continued until the desired packing fraction is achieved.  This process has allowed packing 
fractions as observed in the target applications to be achieved. 
 
The decision over whether two rods intersect is not completely straightforward, as a result of rod 
end effects.  Whilst it is easy to determine whether infinite rods intersect, this is not the case for 
real rods and a number of special cases need to be examined in order to resolve the problem.  
(Even now in the implementation there are some cases where a rod is rejected when it could have 
been accepted.) 
 
The question of whether a rod lies inside the containing vessel is less challenging, but still 
requires some care.  In both cases, a numerical scheme is invoked to do the determination. 
 
Once the rod locations and orientations have been determined, then a MONK calculation could 
use the existing features of simple body geometry referred to above to perform a criticality 
calculation. This requires no code modification.  However, it may be more efficient to use a 
HOLE geometry.  A HOLE geometry has been implemented as a prototype called the 
RANDROD HOLE, and the ability to model the configuration both in terms of simple bodies 
and HOLE geometries has facilitated testing.  This is true both in terms of comparing final 
results, and testing whether the constraints on intersecting bodies etc. referred to above are 
satisfied.  This latter facility is available because for a CLUSTER PART built in consistency self-
checking can be invoked.  This self-checking is based on a semi-analytic formulation of whether 
two simple bodies either intersect, or if one is completely contained within another. 
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In both the simple body geometry and the implementation as a HOLE geometry, the rods can be 
divided up further into radial zones for different materials.  (In the case of the simple body 
geometry, the further refinement could be much more general by making use of the hierarchical 
nature of PARTs.)  This allows, for example, a rod casing to be modelled. 

3.1. Selecting a Rod 
 
The first step in the sampling process is to select a candidate rod for inclusion in the model. The 
arrangement is shown in Fig 1. 
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LC 

(X,Y,Z) 

(U,V,W) 

LR 

RR 

 
Figure 1. Geometry of Rods and Vessel. 

 
 
Each rod is characterized by its length and radius, LR & RR (the same for all rods), the lower end 
of its axis (X,Y,Z) and the direction cosines of the axis (U,V,W).  We therefore have to sample 
for U, V, W, X, Y, Z.  This can be done by first selecting the orientation (U,V,W): randomly 
sample for the direction cosine in the vertical direction, W, from a uniform distribution in the 
range (0,1), then sample for the cosine and sine of the angle in the horizontal plane, C and S.  We 
then can set U=C.Q and V=S.Q, where Q=(1-W2)1/2. 
 
Once the direction cosine in the vertical direction is known, the axial range for the lower end of 
the rod is known, and so the Z co-ordinate can again be chosen from a uniform distribution, this 
time in the range (RRQ, LC-LRW-RRQ), where LC is the height of the vessel . The X and Y 
locations are both randomly sampled in the range (–RC,RC) where RC is the radius of the vessel.  
This choice for X and Y will include some rods that lie outside (either totally or in part) the 
containing vessel.  The candidate rod is accepted or rejected based on the tests below. 

3.2. Determining whether Rod lies Within the Container 
 
The question of whether a rod lies within a cylindrical container can be determined by 
consideration of the origin of the rod and the direction cosines of its axis.  The axial constraint is 
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automatically satisfied by the sampling method used for Z, so we only need to consider the radial 
constraint. 
 

The radial constraint (that is 222
CRyx <+  for all points ( )zyx ,,  lying within the rod) can be 

checked by considering the two ends of the rod – if these discs both lie within the constraining 
cylinder then the whole of the rod does.  In this case it is sufficient to look at the projection of the 
rod ends onto a plane perpendicular to the containing cylinder axis.  This results in considering 
two ellipses with minor principal axes in the direction of the (projection of) the rod axis, and the 
major principal axes perpendicular to this rod axis.  The problem than reduces to the 2D problem 
of checking that the two ellipses lie completely within a circle of radius CR .  We need only 
consider a quarter of each ellipse if we consider the region bounded by the two principal axes 
that point out of the container – formally the vectors defining these two directions satisfy the 
condition 0>⋅ ux , where x  is the position vector of the centre of the ellipse, and u  is the semi-
principal axis. Considering only this quarter of the ellipse has the advantage that  the maximum 
distance from the centre of the cylinder will correspond to the zero of the derivative of the 
distance with respect to distance around the ellipse circumference. 
 
A numerical scheme can then be used to find the maximum distance of the ellipse from the 
origin, and hence whether the rod lies completely within the containing cylinder or not. 

3.3. Determining whether Two Rods Intersect 
 
The problem of whether 2 rods intersect is more complicated.  If the rods were infinite in extent, 
then the problem would be straightforward.  The minimum distance between the rods is along the 
common perpendicular of the rod axes.  So if this distance is greater than twice the rod radius 
then the rods definitely do not intersect.  On the other hand, if this distance is less than twice the 
rod radius AND the common perpendicular joins both rod axes within the physical extents of the 
rods, then the rods definitely intersect. 
 
We are then left with some special cases to consider with regards the rod ends.  We consider the 
four rod end faces (two from each rod) in turn, and consider whether the rod face intersects with 
any part of the other rod.  If they do not, then together with the tests above, we can conclude that 
the rods do not intersect at all. 
 
The intersection of the end of a rod with another rod of infinite length comes down to testing in 
2D whether a circle intersects with an ellipse (by looking in a plane containing the rod end).  We 
choose to reject the rod if any of the four ends would intersect with the other rod extended to 
infinity.  This means that on occasion we will be rejecting a rod that could have been accepted (in 
the case of two rods being almost perpendicular, it may be that we are rejecting a rod based on 
another rod that is not even in close proximity).  Nevertheless, for this application, we are not 
concerned about taking this modelling liberty. 
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3.4. Rod Placement Performance 
 
Packing fractions up to about 28% have been achieved with this algorithm, when the rod length 
to radius ratio is of the order of 10 to 1.  This value is adequate for the envisaged applications for 
the model.  However it would be desirable to achieve higher packing fractions both for scoping 
calculation purposes, and also because the CPU time for rod placement increases dramatically as 
the limiting packing fraction achievable using the current algorithm is approached.  Higher 
packing fractions are achievable, for example by including in the algorithm some subsequent 
movement of rods following placement.  An example of this for Spherocylinders is described by 
Williams and Philipse [4]. 
 

4. TRACKING AND HOLE GEOMETRIES 
 
The above section describes the algorithm for rod placement.  The other part of the 
implementation is particle tracking, this is the subject of the current section. 
 
The particle tracking techniques used in the simple body geometry package have certain 
potential limitations: 

•  Only bodies defined by equations that can be efficiently solved can be employed; 
•  Attempting to model certain replicating and complex components in a realistic manner 

can result in tracking inefficiencies due to the large number of boundaries involved; 
•  The task of composing and checking input data for such a model is a formidable one; 
•  Smearing out spatial detail introduces systematic errors of unknown size. 

 
An alternative tracking strategy exists in the geometry package in the form of special HOLE 
materials, employing Woodcock tracking techniques.  HOLE materials have been an essential 
part of the MONK code for many years and enable geometries commonly used in criticality 
analysis to be accurately and efficiently modeled.  HOLE materials are used in conjunction with 
simple body geometries by placing a HOLE material inside a ZONE. 
 
Tracking across body boundaries is necessary only because the mean free path varies between 
materials.  If the mean free path could be made constant within a zone, then the tracking of 
boundaries could be replaced by the rather easier task of determining the material present at a 
collision point.  This is the idea behind HOLE tracking, the mean free path is set equal to the 
minimum mean free path of all the materials in the HOLE, thus in general increasing the total 
cross-section.  The device of increasing the total cross-sections introduces an additional artificial 
cross-section which in turn produces additional artificial collisions.  The question of whether a 
collision is real or artificial is determined by sampling with a probability of a real collision equal 
to the actual material total cross-section divided by the total cross-section used for the tracking.  
The artificial cross-sections do not disturb the passage of the particle. 
 
The spatial regions of the geometry of a HOLE material can themselves be filled with HOLE 
materials and these yet again to any desired depth. 
 
The random rod geometry has been implemented as such a HOLE geometry (the RANDROD 
HOLE), which means it is possible to run calculations with the random array as either a 
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CLUSTER PART, or a HOLE geometry.  One reason why HOLE geometries can give a big 
advantage over the solid body representation is because of the structured nature of the geometry.  
For example it is particularly easy, using properties of integer arithmetic, to describe the 
geometry of a regular array of rods with a HOLE geometry.  This structure is not available to us 
in the case of a random distribution of rods, and to some extent, each rod must be tested 
individually to see if the collision site is within the rod.  Therefore we cannot expect a speed 
improvement for the RANDROD HOLE commensurate with what would be achieved for a 
regular array. 
 
Currently, following a collision, the code checks through the full list of rods to see if the collision 
has taken place within a rod.  This is not an efficient way of solving the problem, and it is likely 
that dividing the region into sub-regions, each with its own sublist of candidate rods would 
improve the performance.  However, results suggest that the rod placement algorithm dominates 
the code performance (certainly for high packing fractions with say several thousand rods to 
place), and it would be more effective to put effort into improving this part of the algorithm (see 
also subsection 3.4). 
 

5. TESTING 
 
The algorithm described above has been implemented as a prototype in the MONK code giving a 
new HOLE geometry (the RANDROD HOLE).  By printing out the rod location and orientation 
in the correct syntax for MONK, the calculation can also be re-run using the simple body 
geometry package.  This requires no further modifications to MONK, and so the particle tracking 
part of the RANDROD HOLE implementation can be tested against tracking facilities which 
have been established over many years, and are subject to rigorous testing.  An example is given 
in the next section where the calculated keffective is given from equivalent calculations using a 
CLUSTER PART and the RANDROD HOLE, and it is seen that the calculations are in 
agreement. 
 
A feature of the structured CLUSTER PART is that there are some in built geometry testing 
facilities.  This geometry testing will check that none of the contained bodies intersect, and that 
all the contained bodies lie completely within the containing body.  This is exactly what we 
require in order to check the rod placement algorithm.  With only a few hundred rods, the self 
checking is quite quick.  Nevertheless, a large 7000 rod case with a packing fraction of 28% was 
also checked with the CLUSTER part, and gave no failures.  28% seems to be about the limiting 
packing fraction that is achievable with this model. 
 
The MONK code also has some associated graphics codes [5] which can be used to visualise the 
modelled geometry.  The graphics codes read the MONK input, and generate the images using 
the actual tracking routines that are used for MONK calculations. This therefore also provides a 
good visual check that the geometry has been implemented correctly.  One of the graphics codes, 
VISAGE, shows a slice through the geometry.  Fig 2 gives an example case, showing a slice 
through a model, in this case with two vessels using the RANDROD HOLE. Two vessels were 
modeled in order to test and illustrate a number of additional features of the HOLE model, see 
below. 
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Each colour represents a different material.  A small number of rods was modelled to aid 
visualization and to reduce the time to generate the image. In the real application, the packing 
fraction is much higher. 
 

 
Figure 2. Visualisation of RANDROD HOLE with the VISAGE graphics package. 

 
In the figure, the red material represents a fluid.  Each rod is made up of 2 radial regions.  The 
figure demonstrates that the modelling works correctly in that: 

•  changes of coordinates is working as intended, 
•  more than one HOLE geometry can be used in the same model, 
•  subsidiary HOLES work properly 

This latter point is an important aspect of HOLE geometry.  It allows the liquid level to be 
modelled as a PLATE HOLE, which is a HOLE where a number (in this case one) of parallel 
planes can be defined, with different materials between pairs of planes.  It can be seen how this 
enables the fluid to surround the rods up to a specified level. 
 
Another graphics package that is available from ANSWERS to visualize geometries is VISTA-
RAY, which produces a three-dimensional image using ray tracing techniques.  Fig. 3 shows an 
example. 
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Figure 3. Visualisation of RANDROD HOLE with the VISTA-RAY graphics package. 

 
 

6. RESULTS OF CALCULATIONS 
 
This section gives some preliminary results from the random rod model described above.  The 
purpose of the tests are: 

•  To confirm that the model is working correctly; 
•  To compare timings for the 2 geometry models; 
•  To give an indication of the effect of the new model. 

 
The models in this Section used an artificial arrangement for testing purposes only.  Two 
materials were used. 
 
Material 1 Uranium, density 19 g/cc, 5% U235 by weight, 95% U238 
Material 2 Water, density 1 g/cc 
 
The first case presented consists of a cylinder with radius 150 cm and height 200 cm, filled with 
rods of length 100 cm and radius 7 cm.  The rods were modelled as Material 1, and the 
interstitial material was Material 2.  150 rods were placed, corresponding to a packing fraction of 
0.1634. 
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Before presenting the results, it is first helpful to show how keffective varies in this configuration, 
as the degree of mixing of the Uranium with water varies.  This is presented in Fig. 4 below from 
a series of calculations where the Uranium is modeled as spheres on a regular tetrahedral lattice.  
The packing fraction is kept constant at 0.1634, but the diameter of the spheres are varied.  (This 
uses one of the other HOLE geometries available in MONK, the T-HOLE.)  In this instance, the 
spheres may intersect with the vessel boundary, in which case only the portions of the sphere 
within the boundary are used by the model. 
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Figure 4. Variation of keffective with mixing. 

 
Bearing in mind the shape of this curve, we now move on to the case with rods rather than 
spheres.  In the case with rods, there are 3 differences in the modelling which may cause an 
effect. 

•  The Uranium is modeled as a rod, rather than a sphere 
•  All rods are completely within the vessel boundary 
•  The rods are arranged randomly both in terms of position and orientation, rather than as a 

regular array. 
 
The results from the rod cases are shown in Table I below.  Four calculations are given.  The 
CLUSTER PART and the RANDROD HOLE should be equivalent in terms of the model.  The 
GLOBE HOLE case models the rods as 75 rods of length 200 cm, arranged with vertical axes.  
This effectively models the 150 rods stacked as 2 sets of 75.  The arrangement of these rods 
consisted of a central rod, then 4 rings of rods with 6, 12, 18 and 38 rods in each ring.  The 
SMEARED Model uses the same total masses of materials as the other models, but modeled as a 
uniform mixture in the cylinder.  It is equivalent to the case shown in Fig 4, as the radius 
approaches zero. 
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Table I. Model Comparison, Test Case 1 
 

MONK Model keffective σ CPU (s) 

CLUSTER PART 0.8407 0.001 10266 

RANDROD HOLE 0.8401 0.001 4949 

GLOBE HOLE 0.7245 0.001 1600 

SMEARED Model 1.4380 0.001 148 

 
 
It can be seen that the results from the CLUSTER PART and RANDROD HOLE models are in 
agreement, but in this particular case the CLUSTER PART model takes just over twice the run 
time of the RANDROD HOLE model.  It remains to be seen how this scales with number of rods 
modeled in industrial scale applications, and the result will also depend on the mean free paths in 
the various materials (relative to the geometrical length-scales). 
 
There is a large difference in keffective between the rod models and a totally smeared case.  This 
large difference is consistent with Fig 4 above.  The equivalent sphere radius from the regular 
lattice case is about 9.5 cm, which seems consistent with the dimensions of the rods. 
 
A further series of calculations were run using a packing fraction of 0.15.  In this case the 
containing cylinder dimensions were: Radius 7.8528 cm, and height 80 cm.  The rod radius was 
0.5 cm, and the length used was (in three separate calculations) 20, 10 and 5 cm, corresponding 
to a number of rods 148, 296 and 592 respectively.  These choices of dimension were used so as 
to allow for comparison purposes a 37 pin rod cluster (again using the GLOBE HOLE) 80 cm in 
length to be calculated using the same packing fraction.  The results were as follows.  
 

Table II. Model Comparison, Test Case 2 
 

MONK Model keffective σ CPU (s) 

GLOBE HOLE 0.4939 0.001 205 

RANDROD HOLE, 148 rods 0.4842 0.001 662 

RANDROD HOLE, 296 rods 0.4873 0.001 887 

RANDROD HOLE, 592 rods 0.4869 0.001 1445 

SMEARED Model 0.4886 0.001 130 

 
 
In this instance the parameter space for the calculations gave very little variation in keffective 
between cases.  The comparison again confirms the general behaviour of the model, and also that 
the detailed modeling will not always be necessary. 
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7. CONCLUSIONS 
 
A prototype model has been developed for the MONK criticality code to allow a random array of 
rods to be modeled for criticality assessments.  The model allows the user to specify the number 
of rods, and for these rods to be positioned within a containing vessel to a desired packing 
fraction.  The model generates the position and orientation of the rods in a way that does not 
allow the rods to intersect, and constrains all rods to lie within the vessel.  Packing fractions up 
to about 28% have been achieved with the algorithm.  The implementation of this model into an 
established criticality code means that the model can be used for industrial scale applications. 
 
Two geometry models have been used, simple body geometry and HOLE geometry.  The use of 
simple body geometry provides an independent check that the geometric constraints are satisfied 
by the rod position algorithm, and also that the evaluation of keffective in the HOLE geometry 
method is correct.  The paper demonstrates the usefulness of HOLE geometries, and we note that 
in the course of the testing we have used three more HOLE geometries, the PLATE hole (for 
different materials separated by parallel planes), the T-HOLE (for an array of spheres on a 
tetrahedral lattice) and a GLOBE HOLE (for modelling a number of rings of parallel rods). 
 
Idealised calculations have shown that the model is working correctly, and one example has been 
shown where the effect of the model is large, and another where the effect is almost negligible.  
It is anticipated that the model could be used in the nuclear industry to confirm or otherwise the 
adequacy of simpler models.  If confirmation is not given, then the model can be used directly.  
However if the model is to be used for scoping calculations then improvements in speed are 
desirable, particularly for rod placement. 
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