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Abstract - Uncertainty quantification is an important topic in criticality analysis. In this paper two approaches
are investigated, one based on the use of Maximum Likelihood estimators for the estimation of bias in
calculations and one based on Extreme Value Theory which is investigated in the context of assessing tolerance
limits on keff. The Maximum Likelihood estimator is a very general approach, and here single and multiple
parameter models are investigated for both continuous and discrete parameters. The discrete parameter case
can be related to groups of experiments which share common apparatus, which could lead to correlations in the
experimental bias. The statistical models and their results are compared with linear regression models where
appropriate. The Extreme Value Theory approach is applied to a simple model, and the method is compared
against the commonly-used Wilks approach.

I. INTRODUCTION

In criticality analysis, it is important to account for various
sources of uncertainty to ensure subcriticality. Sources of
uncertainties include:

• code bias;

• manufacturing tolerances;

• nuclear data; and

• statistical uncertainties resulting from use of the Monte
Carlo method.

In recent years, there has been a trend towards quantifica-
tion of these uncertainties, with the goal of reducing conser-
vatisms and better quantifying safety margins. In this paper,
methods for quantifying these uncertainties are developed,
with application to the UK industry standard MONK R© Monte
Carlo code [1], developed by Amec Foster Wheeler.

Bias refers to a systematic difference between calcula-
tions from the criticality code and experimental results. Exper-
iments from a validation database can be used to estimate any
bias in the code for physically-similar systems to the chosen
application. Classification systems are available to assist with
experiment selection, though these must be combined with
engineering judgement. In this paper, Maximum Likelihood
Estimation (MLE) based approaches are developed for bias es-
timation, and applied to the MONK validation database. MLE
is a statistical technique which chooses statistically-optimal
models to explain observed data. In this context, these tech-
niques do not require considerable computational expense and
can be used to validate engineering judgement.

For manufacturing tolerances and nuclear data uncertain-
ties, a sampling method can be used, where covariances on
engineering and nuclear data parameters are defined, a sam-
pling scheme is specified, and a number of cases are sampled.
A recent example of such an approach is where the nuclear
data libraries themselves are generated using a sampling pro-
cess [2]. Along with statistical uncertainties, this results in a

distribution of k-effective (keff) values. These can be used to
derive a tolerance interval on the probability that a percentage
of samples will exceed a given value of keff. In this paper, Ex-
treme Value Theory (EVT) is applied to this problem, giving
potential benefits over other approaches. EVT is the branch of
statistics associated with understanding rare events – exactly
what we are interested in here.

II. MAXIMUM LIKELIHOOD ESTIMATORS

MONK has a validation database consisting of a wide
variety of comparisons between experiment and calculated
keff values with different nuclear data libraries. Systems span
a range of fuel compositions, fuel types, geometries, fuel to
moderator ratios and other physical parameters. Useful prop-
erties are also tabulated such as energy of neutrons causing
capture and fission. The objective of the current work is to use
the discrepancies between experiment and calculated values to
estimate the bias in calculations for criticality problems. The
natural framework for this is to use MLE. This comprises:

• assuming an underlying (parameterized) family of distri-
butions that characterize observed data; and

• solving for the value of the parameters in that family of
distributions that make the observed data most likely.

Given some observations xi from a probability distribu-
tion with parameters θ, the likelihood L for a given i is:

L(θ|xi) ≡ P(xi|θ) . (1)

For a set of n independent, identically-distributed obser-
vations x1, . . . , xn, the likelihood function is:

P(x1, . . . , xn|θ) =

n∏
i=1

P(xi|θ) = L(θ|x1, . . . xn) . (2)

Because of the form of distributions commonly assumed,
it is often more convenient to work with the log likelihood
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function, which can be justified since log is monotonic, so we
solve:

argmax
θ∈Θ

logL(θ|x1, . . . xn) , (3)

where Θ is the set of all possible values of θ. That is, we
choose the parameter values that make the observed data most
likely. Here argmax, applied to some function, gives the points
of the domain of the function at which the function is maxi-
mized – in other words, the arguments of the maxima. Note
that the parameter values may not be uniquely defined by this
process. We assume that the underlying data have a normal
distribution, since:

• Normal distributions are uniquely characterized by their
mean and variance (and generally this is the only infor-
mation we have);

• we can do online updating with a Normal distribution as
it is self-conjugate; and

• the equations to solve are smooth and well behaved.

We assume that the bias bi (defined as calculated value
− experimental value) for each of i different experiments is
linearly dependent on m known parameters zi j, where j =
1, . . . ,m. In this case, we may express the bias as:

bi = γ +
∑

j

P jzi j + εi , (4)

where

• γ ∼ N(µ0, σ
2
0) is a normally distributed constant offset to

the bias;

• P j ∼ N(µ j, σ
2
j) are normally distributed coefficients of

the assumed linear dependence; and

• εi ∼ N(0, ρ2
i ) is the distribution of the error of experiment

i with quoted experimental uncertainty ρi.

From here it is possible to derive the distribution of bi and
hence the log likelihood function that we wish to maximize:∑

i

(
−

1
2

log(2πs2
i ) −

(bi − mi)2

2s2
i

)
, (5)

where

• mi = µ0 +
∑

j µ jzi, j ; and

• s2
i = σ2

0 +
∑

j σ
2
jz

2
i, j + ρ2

i

Although it is possible to differentiate the log likelihood
function, the equations that result do not appear to be amenable
to analytic solution so we solve this maximization problem
numerically.

It is worth here comparing the classical linear regression
model with the MLE model described above, in order to high-
light the similarities and the differences.

The basic linear regression model comes from considering
the following model.

bi = γ +
∑

j

P jzi j + ε , (6)

where in this case

• γ and P j are constants; and

• ε is the distribution of the error. It is not necessary to
assume this to be normally distributed, but if that assump-
tion is made, then the MLE estimators for the model are
the same as the usual least squares estimators.

So it can be observed that this linear regression model is
equivalent to the MLE model, but with all the σ terms set to
zero, and with the ε term made independent of the experiment
i.

An interpretation of the σ terms in the MLE model is
the degree to which the underlying linear model is consistent
with the observations, taking into account the experimental
uncertainty. If the model is consistent with the observations
(taking into account the experimental uncertainty) we expect
small values of the σ terms to be fitted. As inconsistencies are
introduced, the MLE fit will need increased values of the σ
terms to compensate.

The σ terms can be combined to give a scalar function of
the parameters (z j), which we refer to as the model uncertainty,
given by: √

σ2
0 +

∑
j

σ2
jz

2
j (7)

A small value for the model uncertainty does not im-
ply a small uncertainty on the bias (since there is still the
experimental uncertainty to take account of), but it would in-
dicate an underlying consistency between the model and the
observations. Larger values may indicate a limitation to the
underlying model’s ability to represent the observations. The
model uncertainty will be included in the results presented
later.

Two MLE approaches are considered in this paper:

• Parameter-based MLE, where bias is a function of exper-
imental set-up (e.g. energy of neutrons causing capture).
This is essentially the model described above.

• Experiment-based MLE. Typically, experiments can be
grouped, where multiple experiments are performed us-
ing the same apparatus. It could therefore be assumed
that experiments in each group have an associated con-
stant bias, which could occur as a result of correlations
between the experiments for example. Some small adjust-
ments need to be made to the model for Parameter-based
MLE to achieve this. Details are given when we describe
the method in more detail below.

Simple examples are now presented for each approach
based on the MONK validation database.

1. Parameter-Based MLE

A. Single Parameter-Based MLE

In this section, a single-parameter MLE is first performed
to derive the bias for selected cases in the MONK validation
database, based on the log of the mean energy of neutrons
causing capture. This is not in itself necessarily a good means
of estimating bias, but is used to show how MLE behaves in
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different regimes, and serves as a starting point for developing
a more appropriate model.

Firstly, a small set of 9 cases, where the energy of neu-
trons causing capture is very similar is considered (Fig. 1,
top). Fits to the bias based on a simple mean, a linear regres-
sion analysis and MLE are calculated. Unlike least squares
regression, MLE factors in the experimental error. In this
case, any potential dependency on the variable, log energy
of neutrons causing capture, is masked by the experimental
uncertainty. The results are very consistent, with the variation
easily explained by experimental uncertainty. In this case the
σ terms from the MLE model are effectively zero, which can
be interpreted as indicating that there is no need for the model
to allow additional uncertainty on the bias in order to explain
the experimental results. The lines given by the mean, the
linear regression model and MLE are all consistent with the
experimental results, with the MLE and linear regression lines
being effectively coincident (which is why the MLE line is not
easily visible).

Fig. 1. MLE for tests with 9 (top) and 55 (bottom) cases.

Next, a larger set of 55 cases is considered (Fig. 1 bot-
tom). Here, there is a stronger variation of bias with energy of
neutrons causing capture, and the MLE is in good agreement
with the linear fit as the spread on the data points is much
larger than the individual error.

The figure also includes the model uncertainty at the three
standard deviation level (shown in blue highlight in Fig. 1).
As noted above, the model uncertainty is derived from the

MLE estimators, but without the quoted experimental uncer-
tainty included. Specifically, these highlighted error ranges
are calculated as

±3
√
σ2

0 + σ2
1z2 (8)

These error ranges, which were not visible in the MLE
for the 9 cases, arise from the need for the MLE model to
allow for the variation in the observed results which cannot be
explained by the experimental uncertainty alone. The "most
likely" explanation, given the constraints of the model is for
there to be uncertainty in the coefficients themselves. Here
this modelling uncertainty is dominated by the uncertainty
associated with the constant term in the model, and this can be
observed visually as the spread of the modelling uncertainty
appears constant throughout the range.

Fig. 2. MLE for tests with 100 cases.

If we extend the number of cases from the MONK val-
idation database to 100, then a different picture emerges, as
shown in Fig. 2. Now there appears to be two distinct regions
of data as a function of the log energy of neutrons causing
capture. The behaviour of the MLE differs from both the mean
and linear regression model. The MLE model effectively tries
to give the best of both worlds. In the left hand side of the plot,
the linear model makes sense but in the right hand side of the
plot, the mean makes more sense (based on relative spread of
data points and experimental error).

The model as presented here is a little unsatisfactory as it
artificially forces a minimum model uncertainty at an arbitrary
energy of 1 unit. Invariance under a change in energy units
could be recovered by adding an additional term into the model

bi = γ +
∑

j

P j(zi j − z0 j) + εi , (9)

where

• z0 j is a fitted offset to the z coordinate

If this is done, then a slightly modified graph results, but what
is still clear is that the model chosen (that is, a model assuming
an underlying linear relationship with a single variable) is
insufficient to describe the data. We therefore consider a more
general model.
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B. Multiple Parameter-Based MLE

The extended model now includes three parameters:

• H:Fissile material ratio;

• energy of neutrons causing capture; and

• energy of neutrons causing fission.

Fig. 3 shows the multiple parameter MLE model, applied
to the first 27 cases from the MONK validation set in the top
figure, and the first 30 cases in the bottom figure.

Fig. 3. Multi-parameter MLE compared to data with uranium
only cases (top) and additional plutonium cases (bottom).

As the bias is now being cast as a function of multiple
parameters, it is no longer possible to simply plot best line fits,
and so the presentation of the results differs a little compared
to the single parameter cases above. The multiple parameter
graphs show the observed expermental result together with
the associated uncertainty in blue, and the model predicted
bias, together with the model uncertainty (at the one standard
deviation level) in green. Once again we emphasize that the
model uncertainty does not indicate the overall uncertainty
on the bias, rather the additional uncertainty required to give
consistentency between the model and the observations.

Going from 27 to 30 cases introduces a plutonium based
system, so a small minority of plutonium-based experiments
are added to a dataset containing cases which are otherwise

uranium based. (Note these plutonium cases were not included
in the one parameter model comparisons).

For the first 27 cases the predicted bias and model un-
certainty is small. The introduction of the plutonium based
systems challenges the MLE model as implemented, since
the model does not include any dependency directly based on
material composition. As expected, the errors on the predicted
biases increase, but the predicted biases for the uranium sys-
tems remain sensible. This gives evidence that the approach
is robust against occasionally misidentifying cases that the
chosen model cannot explain.

Finally in this section, we increase the size of the database
again, now to include 60 cases (Fig. 4). The number of ura-
nium cases still outweighs the number of plutonium cases.
The predicted error on the bias increases markedly but for
many of the uranium systems, the prediction is still very good.

Fig. 4. Multi-parameter MLE for the first 60 MONK validation
cases.

We now present a modified MLE approach.

2. Experiment-based MLE

In the Experiment-based MLE approach we model the
bias in the form.

bg,i = b0 + bg + εg,i , (10)

where

• g is the experimental group;

• i refers to a specific experiment in an experimental group;

• b0 ∼ N(µ0, σ
2
0) is a normally distributed overall bias that

is independent of the experimental group;

• bg ∼ N(µg, σ
2
g) are normally distributed biases that are

specific to the experimental group to which the experi-
ment belongs; and

• εg,i ∼ N(0, ρ2
g,i) is the distribution of the error of experi-

ment i in experiment group g.

The parameter estimation for the Experiment-based
MLE is similar to that of the Parameter-based MLE. In the
Experiment-based MLE the function to be maximized is now:
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∑
g

neg∑
i=1

(
−

1
2

log(2πs2
g,i) −

(bg,i − mg)2

2s2
g,i

)
, (11)

where

• neg is the number of experiments in experiment group g;

• mg = µ0 + µg ; and

• s2
g,i = σ2

0 + σ2
i + ρ2

g,i .

The principal changes to the formulation compared to the
Parameter-based approach is that rather than all coefficients
potentially featuring for each experiment, we now just have the
overall bias and the bias attributed to the experimental group
to which an individual experiment belongs. The approach to
optimizing the parameters is the same as before. However
the approach we take to demonstrating the effectiveness of
the method differs. The discussion below tries to capture the
idea that as the experimental base is extended we would hope
to see a clearer division between the bias attributable to each
individual experimental group and that which belongs as an
overall bias. We proceed as follows by considering subsets of
the experimental groups. We consider n experimental groups,
each of which may contain a number of individual experiments.
For this set of n experimental groups there are 2n − 1 possible
subsets (not including the empty set).

The MLE problem is solved for progressively-larger sub-
sets of the overall set of experimental groups, and the bias is
derived based on the number of subsets included.

To illustrate this we use a setup of experiments based on
9 experimental groups which here are labelled as cases 1–9
(see Table I). Each group has multiple individual experiments
associated with it, ranging from four to twelve. These cases
were taken from the MONK validation database, with some
artificial anomalies added for testing purposes as described
below.

Case No of Description and additional comments
expts

1 9 2.35 wt% 235U enriched UO2
2 10 4.738 wt% 235U enriched UO2
3 8 4.31 wt% 235U enriched UO2
4 8 2.46 wt% 235U enriched UO2
5 9 4.46 wt% 235U enriched damp U3O8
6 12 4.74 wt% 235U enriched UO2
7 9 Repeat of case 5 with added bias
8 4 Benchmark LEU-COMP-007
9 4 Benchmark LEU-COMP-039

TABLE I. Cases from the MONK Validation database.

Fig. 5 shows the behaviour of the estimated experimental
group bias (that is the µg terms) for each case as the size of
the subgroup increases. To be precise, the MLE procedure
is applied to every subgroup of a particular size that also
contains the particular group, and the average of the estimated
bias over all these subgroups has been plotted. The subgroup

will include all individual experiments corresponding to the
experimental group included in the subset.

Additionally an overall bias is plotted. This is the com-
ponent of the bias that is not attributed (by the model) to a
particular group (that is, it is based on the µ0 term). Again it
is actually the average over all subgroups of a particular size.

The figure also shows the standard deviation plotted
against subgroup size. This is analogous to the bias plot, but
uses the predicted σ0 and σi terms. As expected, the biases
appear to be converging on fixed values.

Fig. 5. Biases calculated for subsets of a given fixed size.

For the data in Fig. 5, Cases 5 and 7 are the same, except
that Case 7 has an artificially-added bias of 0.01. As apparent
from Fig. 5, this bias can be recovered by MLE. These cases
also have the same standard deviation.

III. EXTREME VALUE THEORY

When assessing the likelihood of keff being less than unity,
accounting for the uncertainties described above, it is common
to run a large number of simulations in order to estimate the
probability that the system is critical. Possible approaches to
defining this probability are discussed below.

1. Tolerance Limit Based Approach

Without knowing anything about the distribution of keff it
is possible to follow the approach of Wilks [3] for calculating
a tolerance range (L1, L2) for x from a sample:

For a given method of calculating tolerance limits, how
large should our sample be in order that the proportion P of
the universe included between L1 and L2 has an average value
a, and will be such that the probability is at least p that x will
lie between two given numbers, say b and c?

The method proceeds by letting L1 be the greatest of the
r smallest values in the sample, and L2 the smallest of the r
largest values, and analysing the distribution of the proportion
of the universe represented by the tolerance range.

The approach is quite general and results in distributions
from the beta family. That is, distributions of the form

f (p) ∝ p(a−1)(1 − p)(b−1) , (12)

where f is the probability density function.
Here a and b are the parameters of the distribution, and

completely specify the distribution.
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Although not required generally for beta distributions, for
this particular application a and b will always be integers, and
arise quite naturally from a partition of the observed results.

In [3] the result is derived by considering a multinomial
distribution and generates a beta distribution with parameters
a − 1 = n − 2r and b − 1 = 2r − 1.

Here we only consider the proportion of the universe
given by all values up to the upper bound of the tolerance
range (i.e. ignoring the lower bound). In this case the beta
distribution parameters are a − 1 = n − r and b − 1 = r − 1.

In the special case where r = 1, the distribution just
reverts to the following familiar distribution

f (p) = n ∗ p(n−1) , (13)

with Cumulative Distribution Function

F(p) = pn . (14)

(This form of expression can arise from the probability
of success in n successive independent Bernoulli trials, where
the probability of success in an individual trial is p, but note
here it is being used as a distribution for p, not n.)

This distribution therefore gives the probability that the
range up to the maximum observed value covers the proportion
p of the universe.

The method makes no assumptions regarding the distribu-
tion f , other than mild constraints regarding continuity. The
result itself is independent of the distribution f .

Very often this expression is used to determine the sample
size required to give a certain probability that a certain pro-
portion of the universe is sampled. For example a probability
of 95% that at least 95% of the universe is sampled may be
achieved with a sample size of 59, and using the maximum of
the sample. This comes from evaluating∫ 1

0.95
n ∗ p(n−1)dp = 1 − 0.95n

and finding the value of n so that the integral exceeds 0.95.
If we were to repeat the experiment of sampling 59 values

from a distribution a large number of times, then we would ex-
pect at least 95% of the observed maxima to be above the 95th

percentile of the distribution, regardless of what the underlying
distribution was.

We now turn our attention to a slightly different question:
Based on our observed values of keff, what is the proba-

bility that a given proportion of the universe is less than unity
(or some other specified limit)?

Note that the variation in keff is the variation in calcula-
tions resulting from uncertainty in input parameters.

With this question in mind, the Wilks formula where
we take the maximum keff, is only directly applicable if the
maximum observed keff is actually unity.

However if the maximum value is less than unity, then
we can still infer that the probability is less than 1 − pn that
a given proportion of the universe (represented by p) is less
than unity.

If the maximum value is greater than unity then we do not
get a bound on the probability based on the maximum value.

However it is still possible to take the location of the maximum
observed keff that is less than unity, and use the appropriate beta
distribution for this location using the expressions involving r
and n above.

Evaluations are shown in Table II for various r and n,
where the proportion of the universe, p, has been set to 0.999.

r = 1 r = 2 r = 3

n=100 0.0952079 0.00463807 0.000150376
n=1000 0.632305 0.264241 0.0802093
n=10000 0.999955 0.999503 0.99724

TABLE II. Probability of 99.9% of the universe being below
the top rth value from a sample size of n.

Having described the Wilks approach, we now turn our
attention to an alternative approach to finding tolerance limits.

2. Distribution of Maxima

Given that a known distribution of keff is not guaranteed
physically, an alternative is to work with the data in such a
way as to guarantee a known distribution mathematically. It
is a well known result in Extreme Value Theory (EVT) (see
for example [4]) that, if X1, X2, . . . are independent identically-
distributed random variables, and Mn = max(Xi), then if a
sequence of pairs of real numbers (an, bn) exists with each an
greater than zero such that Eq.(15) is true:

lim
n→∞

P
(

Mn − bn

an
≤ x

)
= F(x) (15)

then F(x) is either a Gumbel, Frechet or Weibull distribution;
these are often grouped into the generalized extreme value
distribution which has the form:

F(x; µ, σ, ξ) = exp

− [
1 + ξ

x − µ
σ

]− 1
ξ

 (16)

where µ, σ and ξ are parameters describing the distribution.
That is, if the distribution of maxima is suitably normal-

ized by a set of (an, bn), and tends towards a limiting distribu-
tion, then we know what form that distribution takes.

We can observe that it is necessary to include some form
of normalization via the sequence of pairs (an, bn), since with-
out these then Mn will approach a degenerate distribution
allowing only one value for the random variable. Loosely this
is a theorem applying to maxima that is the counterpart of
the central limit theorem for averages, and even in the case
of the central limit theorem there is a need for some form of
normalization since the variance of the distribution of averages
approaches zero as the size of the set of values forming the
average increases.

The existence of the sequence of pairs can either be justi-
fied or just assumed, but in practice this means that if we can
generate a sequence of maxima from the keff values then we
can guarantee that that they will obey the generalized extreme
value distribution and we can use MLE, or some other fitting
method, in order to solve for the parameters of the distribution.

Two common methods [4] for generating the sequence of
maxima are:
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• Method of block maxima (MOBM) – the sequence of
maxima generated by considering the calculated keff val-
ues block-wise and returning the maximum of each block;
and

• Peak Over Threshold (POT) – the sequence of maxima
generated by taking all values over a given, user defined
threshold. Note that, in this case, the numbers in fact
follow a Pareto distribution rather than a generalized
extreme value distribution; however, this distinction is
not important in the context of this paper.

Note that both of these processes contain a degree of arbi-
trariness – the first on the choice of block size and the second
on the value of the threshold. So, the process of calculating
the probability of the system being critical based on the keff

data goes as follows:

1. Calculate a sequence of maxima using the MOBM.

2. Fit this to a generalized extreme value distribution.

3. Calculate a return time for keff = 1; that is, calculate the
expected number of blocks before we should see a value
of keff > 1.

4. This defines an exponential process with a known rate
constant. We can then use this exponential process to
calculate the probability of getting keff > 1 within a fixed
number of samples (say n = 1000).

A simple mathematical example is used here to illustrate
the approach, where:

keff =
1.2Z

Z + αX + αY
, (17)

with α being a user-defined parameter and X, Y , Z being
random variables, in this case taken from beta distributions.
Although this model is intended for illustrative purposes, we
can clearly identify Z as analogous to a fission term, the factor
1.2 as the average number of fission children, and the X and
Y terms as representing absorption. It is also clear that as α
increases (analogous to increasing the amount of absorption),
the probability of the event that keff > 1 will occur decreases.

In the following, a sample of size, nsamp, was generated for
this problem, and used to calculate the probability that there
is a 0.1% chance of getting keff > 1, based on calculations
using EVT with MOBM. The value of α is then varied, with
the same set of sampled values for X, Y , and Z used for each
value of α.

For clarity, we go through the EVT approach here in
sufficient detail as to allow the reader to repeat the method.
Here we used the the Mathematica [5] package to provide
some of the numerics – alternative numerics packages could
have been used.

The steps are as follows:

1. take nsamp random values for each of X, Y , Z. Here we
used distributions X ∼ β(2, 4), Y ∼ β(9, 2) and Z ∼
β(4, 4) ;

2. calculate the corresponding nsamp values of keff by substi-
tuting into

keff =
1.2Z

Z + αX + αY
for a specific value of α ;

3. partition the keff values into bins of size 20, and take the
maximum of each (so, for example nsamp = 1000 would
give 50 values, nsamp = 10000 would give 500 values);

4. fit the generalized extreme value distribution to the set
of maximum values. For this work we have used the
EstimatedDistribution function from the Mathemat-
ica package, using the default method for parameter esti-
mation, which is in fact to maximize the log-likelihood
function;

5. set λ = − log(F(1)) where F is the Cumulative Distri-
bution Function for the fitted generalized extreme value
distribution; and

6. finally evaluate 1 − G(50) where G is the Cumulative
Distribution Function for the exponential distribution
with parameter λ (or equivalently, evaluate exp(50λ)), to
give the probability of obtaining a consecutive sequence
of 1000 (= 50 × 20) keff values with keff < 1.

From the simulation, the probability that there is a 0.1%
chance that keff > 1, using nsamp=1000, is shown in Fig. 6.

As α increases, the EVT shows an increasing probability
that keff > 1.

Fig. 6. Probability of there being a 0.1% chance of getting
keff> 1 as calculated by EVT – each run using the same set of
random numbers.

Using 1000 sampled values (for nsamp) gives a manage-
able number of evaluations to test the implementation, but it
is apparent by, for example, rerunning cases with different
random number seeds, that 50 evaluations of the maxima is
insufficient to fit the extreme value distribution in this instance.
This can be seen in Fig. 7, where different random number
seeds are chosen to start the process.

This leads us to investigate how large a sample size is
needed in order to give a stable representation of the extreme
value distribution. It was observed that once the number of
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maxima reached about 1500 (rather than the 50 used above),
the calculation stabilized, as can be seen in Fig. 8 and Fig. 9
which use 500 and 1500 maxima respectively. 1500 maxima
correspond to a value of nsamp of 30000.

Fig. 7. Probability of there being a 0.1% chance of getting keff>
1 as calculated by EVT – each case using different random
number seeds.

Fig. 8. Probability of there being a 0.1% chance of getting keff>
1 as calculated by EVT – each case using different random
number seeds, with 500 maxima.

3. Discussion

The EVT approach appears to offer a meaningful way
to assign a probability to the event that there is a (specified)
low probability of observing keff > 1. However there are still
questions and caveats as detailed below:

• What method should be used to generate the list of max-
ima: MOBM, POT or some other method?

• For whichever method is chosen, there are arbitrary pa-
rameters (the number of bins, the height of the threshold
etc.) –what is the correct/optimal choice of these parame-
ters? How does the choice of these parameters affect the
calculated probability?

• The example has used an off-the-shelf fitting routine. Are
there alternative approaches that might be more suitable?

Fig. 9. Probability of there being a 0.1% chance of getting keff>
1 as calculated by EVT – each case using different random
number seeds, with 1500 maxima.

The above list relates to potential improvements in the
EVT implementation. We also note another potential issue
where care is needed:

• Is it a valid assumption to consider the keff values as inde-
pendent, identically-distributed variables or a time series?
In particular, if there is a structure to the variation of the
input parameters to the calculations then this will lead to
a non-random structure in the calculated keff values.

The probabilities generated by the EVT method as pre-
sented are different from those given by the Wilks method. In
the EVT method they are the probability of obtaining (in this
case) 1000 successive values of keff < 1, or more generally
(1 − q)−1 successive values, where q is the fraction of the uni-
verse required to be less than unity. In the case of Wilks, the
probability supplied is the probability that the range contains
a fraction q of the universe. This means the two measures are
not directly comparable. Further work is needed to investigate
the relative merits of the approaches, particularly in the light
of the potential improvements that could be made in the EVT
approach from the above.

To round off this discussion, we apply the Wilks approach
to the simple mathematical example given by Eq. (17). Fig. 10
shows the probabilities calculated by the Wilks method that
in 99.9% of the universe keff is less than unity (that is the
probability that 0.1% of the universe has keff greater than
unity), and plots these probabilities against α as in the previous
figures. It is calculated once for a sample of 1000 keff values
(as calculated using the test model), and once using 30000 keff

values. The number of occurrences of keff > 1 is counted, and
this is used to select the appropriate beta distribution.

The plots can be considered as lower bounds since the
probabilities are evaluated for the highest observed value of
keff that is less than unity. This can be illustrated by the right
hand side of the figure in the 1000 evaluations case. Although
the probability stays well below 1, this is because there are no
observations of keff exceeding unity at the right hand side of
the figure.

As the number of observations increases (or evaluations
in the case of our simple model), there is a much more defined
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Fig. 10. Probability of there being a 0.1% chance of getting
keff > 1 as calculated by the Wilks approach.

range of α corresponding to the transition where 99.9% of the
universe is below unity.

IV. CONCLUSIONS

This paper outlines the mathematical basis for two meth-
ods to address uncertainty quantification for Monte Carlo radi-
ation transport, with particular application to criticality analy-
sis.

The Maximum Likelihood Estimator (MLE) has been ap-
plied to the problem of bias estimation based on a validation
database. Using this approach, which does not require consid-
erable computational expense, bias can be estimated based on
pre-existing data and experiment selection for bias estimation
based on engineering judgement can be validated. MLE is
shown to be robust against occasionally misidentifying cases
that the chosen model cannot explain.

Two approaches to the model parameterization have been
explored: one where the bias is modelled as varying contin-
uously with some physical parameter, the other where the
bias is considered to vary in a discrete way, depending for
example on aspects of the experimental facility. This provides
a framework for a more formal, rigorous calculation of bias
estimation for criticality analysis, in particular for the MONK
Monte Carlo code. further work includes analysing the meth-
ods in more detail, and testing against a wider range of data in
the MONK validation database.

An approach to calculating the probability that keff is
greater than 1, or some subcritical limit, has been identified
based on EVT, with clear relevance to the field of criticality
analysis. This method has the potential to provide much higher
levels of certainty on reported results than other methods and
has been demonstrated for an example mathematical problem.
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